人教版初一數(shù)學(xué)下冊期末幾何壓軸題模擬復(fù)習(xí)期末幾何壓軸題模擬卷含解析_第1頁
人教版初一數(shù)學(xué)下冊期末幾何壓軸題模擬復(fù)習(xí)期末幾何壓軸題模擬卷含解析_第2頁
人教版初一數(shù)學(xué)下冊期末幾何壓軸題模擬復(fù)習(xí)期末幾何壓軸題模擬卷含解析_第3頁
人教版初一數(shù)學(xué)下冊期末幾何壓軸題模擬復(fù)習(xí)期末幾何壓軸題模擬卷含解析_第4頁
人教版初一數(shù)學(xué)下冊期末幾何壓軸題模擬復(fù)習(xí)期末幾何壓軸題模擬卷含解析_第5頁
已閱讀5頁,還剩44頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

一、解答題1.如圖,在平面直角坐標(biāo)系中,已知,將線段平移至,點在軸正半軸上,,且.連接,,,.(1)寫出點的坐標(biāo)為;點的坐標(biāo)為;(2)當(dāng)?shù)拿娣e是的面積的3倍時,求點的坐標(biāo);(3)設(shè),,,判斷、、之間的數(shù)量關(guān)系,并說明理由.2.已知,點在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點,請利用(1)的結(jié)論說明:.(3)圖3中,的平分線與的平分線相交于點,請直接寫出與之間的數(shù)量關(guān)系.3.如圖,已知直線射線,.是射線上一動點,過點作交射線于點,連接.作,交直線于點,平分.(1)若點,,都在點的右側(cè).①求的度數(shù);②若,求的度數(shù).(不能使用“三角形的內(nèi)角和是”直接解題)(2)在點的運動過程中,是否存在這樣的偕形,使?若存在,直接寫出的度數(shù);若不存在.請說明理由.4.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點,點M,點N分別是直線CD,EF上一點(不與P,Q重合),連接PM,MN.(1)點M,N分別在射線QC,QF上(不與點Q重合),當(dāng)∠APM+∠QMN=90°時,①試判斷PM與MN的位置關(guān)系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點作AB的平行線)(2)點M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關(guān)系.(注:此題說理時不能使用沒有學(xué)過的定理)5.如圖①,將一張長方形紙片沿對折,使落在的位置;(1)若的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);(2)如圖②,再將紙片沿對折,使得落在的位置.①若,的度數(shù)為,試求的度數(shù)(用含的代數(shù)式表示);②若,的度數(shù)比的度數(shù)大,試計算的度數(shù).6.如圖,直線AB∥直線CD,線段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點,連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).7.(閱讀材料)數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:“39”.鄰座的乘客十分驚奇,忙間其中計算的奧妙.你知道怎樣迅速準(zhǔn)確的計算出結(jié)果嗎?請你按下面的步驟試一試:第一步:∵,,,∴.∴能確定59319的立方根是個兩位數(shù).第二步:∵59319的個位數(shù)是9,∴能確定59319的立方根的個位數(shù)是9.第三步:如果劃去59319后面的三位319得到數(shù)59,而,則,可得,由此能確定59319的立方根的十位數(shù)是3,因此59319的立方根是39.(解答問題)根據(jù)上面材料,解答下面的問題(1)求110592的立方根,寫出步驟.(2)填空:__________.8.對任意一個三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“夢幻數(shù)”,將一個“夢幻數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三數(shù),把這三個新三位數(shù)的和與111的商記為K(n),例如,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和為,,所以.(1)計算:和;(2)若x是“夢幻數(shù)”,說明:等于x的各數(shù)位上的數(shù)字之和;(3)若x,y都是“夢幻數(shù)”,且,猜想:________,并說明你猜想的正確性.9.[閱讀材料]∵,即,∴,∴的整數(shù)部分為1,∴的小數(shù)部分為[解決問題](1)填空:的小數(shù)部分是__________;(2)已知是的整數(shù)部分,是的小數(shù)部分,求代數(shù)式的平方根為______.10.規(guī)定:求若千個相同的有理數(shù)(均不等于)的除法運算叫做除方,如等,類比有理數(shù)的乘方,我們把記作,讀作“的圈次方”,記作,讀作“的圈次方”,一般地,把記作,讀作“”的圈次方.(初步探究)(1)直接寫出計算結(jié)果:;;(2)關(guān)于除方,下列說法錯誤的是()A.任何非零數(shù)的圈次方都等于B.對于任何正整數(shù)C.D.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù)(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?(3)試一試:,依照前面的算式,將,的運算結(jié)果直接寫成冪的形式是,;(4)想一想:將一個非零有理數(shù)的圓次方寫成冪的形式是:;(5)算一算:.11.我們知道,任意一個正整數(shù)都可以進(jìn)行這樣的分解:(,是正整數(shù),且),在的所有這種分解中,如果,兩因數(shù)之差的絕對值最小,我們就稱是的最佳分解,并規(guī)定:.例如:可分解成,或,因為,所以是的最佳分解,所以(1)填空:;;(2)一個兩位正整數(shù)(,,,為正整數(shù)),交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為,求出所有的兩位正整數(shù);并求的最大值;(3)填空:①;②;12.閱讀材料,回答問題:(1)對于任意實數(shù)x,符號表示“不超過x的最大整數(shù)”,在數(shù)軸上,當(dāng)x是整數(shù),就是x,當(dāng)x不是整數(shù)時,是點x左側(cè)的第一個整數(shù)點,如,,,,則________,________.(2)2015年11月24日,杭州地鐵1號線下沙延伸段開通運營,極大的方便了下沙江濱居住區(qū)居民的出行,杭州地鐵收費采用里程分段計價,起步價為2元/人次,最高價為8元/人次,不足1元按1元計算,具體權(quán)費標(biāo)準(zhǔn)如下:里程范圍4公里以內(nèi)(含4公里)4-12公里以內(nèi)(含12公里)12-24公里以內(nèi)(含24公里)24公里以上收費標(biāo)準(zhǔn)2元4公里/元6公里/元8公里/元①若從下沙江濱站到文海南路站的里程是3.07公里,車費________元,下沙江濱站到金沙湖站里程是7.93公里,車費________元,下沙江濱站到杭州火東站里程是19.17公里,車費________元;②若某人乘地鐵花了7元,則他乘地鐵行駛的路程范圍(不考慮實際站點下車?yán)锍糖闆r)?13.如圖,已知點,,.(1)求的面積;(2)點是在坐標(biāo)軸上異于點的一點,且的面積等于的面積,求滿足條件的點的坐標(biāo);(3)若點的坐標(biāo)為,且,連接交于點,在軸上有一點,使的面積等于的面積,請直接寫出點的坐標(biāo)__________(用含的式子表示).14.如圖,已知直線,點在直線上,點在直線上,點在點的右側(cè),平分平分,直線交于點.(1)若時,則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動,其他條件不變,請畫出相應(yīng)圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)15.如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點A、B的坐標(biāo);(2)將線段OA沿軸向上平移后得到PQ,點O、A的對應(yīng)點分別為點P和點Q(點P與點B不重合),設(shè)點P的縱坐標(biāo)為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設(shè)PQ交線段AB于點K,若PK=,求t的值及△BPQ的面積.16.某加工廠用52500元購進(jìn)A、B兩種原料共40噸,其中原料A每噸1500元,原料B每噸1000元.由于原料容易變質(zhì),該加工廠需盡快將這批原料運往有保質(zhì)條件的倉庫儲存.經(jīng)市場調(diào)查獲得以下信息:①將原料運往倉庫有公路運輸與鐵路運輸兩種方式可供選擇,其中公路全程120千米,鐵路全程150千米;②兩種運輸方式的運輸單價不同(單價:每噸每千米所收的運輸費);③公路運輸時,每噸每千米還需加收1元的燃油附加費;④運輸還需支付原料裝卸費:公路運輸時,每噸裝卸費100元;鐵路運輸時,每噸裝卸費220元.(1)加工廠購進(jìn)A、B兩種原料各多少噸?(2)由于每種運輸方式的運輸能力有限,都無法單獨承擔(dān)這批原料的運輸任務(wù).加工廠為了盡快將這批原料運往倉庫,決定將A原料選一種方式運輸,B原料用另一種方式運輸,哪種方案運輸總花費較少?請說明理由.17.(了解概念)在平面直角坐標(biāo)系中,若,式子的值就叫做線段的“勾股距”,記作.同時,我們把兩邊的“勾股距”之和等于第三邊的“勾股距”的三角形叫做“等距三角形”.(理解運用)在平面直角坐標(biāo)系中,.(1)線段的“勾股距”;(2)若點在第三象限,且,求并判斷是否為“等距三角形”﹔(拓展提升)(3)若點在軸上,是“等距三角形”,請直接寫出的取值范圍.18.在平面直角坐標(biāo)系中,已知點,,連接,將向下平移6個單位得線段,其中點的對應(yīng)點為點.(1)填空:點的坐標(biāo)為______,線段平移到掃過的面積為______.(2)若點是軸上的動點,連接.①如圖,當(dāng)點在軸正半軸時,線段與線段相交于點,用等式表示三角形的面積與三角形的面積之間的關(guān)系,并說明理由.②當(dāng)將四邊形的面積分成1∶3兩部分時,求點的坐標(biāo).19.先閱讀下面材料,再完成任務(wù):有些關(guān)于方程組的問題,欲求的結(jié)果不是每一個未知數(shù)的值,而是關(guān)于未知數(shù)的代數(shù)式的值,如以下問題:已知實數(shù),滿足,……①,,……②,求和的值.本題常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的代數(shù)式得到答案,常規(guī)思路運算量比較大.其實,仔細(xì)觀察兩個方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當(dāng)變形整體求得代數(shù)式的值,如由①-②可得,由①+②×2可得,這樣的解題思想就是通常所說的“整體思想”解決問題:(1)已知二元一次方程組,則______,______;(2)某班級組織活動購買小獎品,買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元,則購買5支鉛筆、5塊橡皮、5本日記本共需多少元?(3)對于實數(shù),,定義新運算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運算.已知,,那么______.20.(閱讀感悟)一些關(guān)于方程組的問題,若求的結(jié)果不是每一個未知數(shù)的值,而是關(guān)于未知數(shù)的式子的值,如以下問題:已知實數(shù),滿足①,②,求和的值.本題的常規(guī)思路是將①②兩式聯(lián)立組成方程組,解得,的值再代入欲求值的式子得到答案,常規(guī)思路運算量比較大.其實,仔細(xì)觀察兩個方程未知數(shù)的系數(shù)之間的關(guān)系,本題還可以通過適當(dāng)變形整體求得式子的值,如由①-②可得,由①+②×2可得.這樣的解題思想就是通常所說的“整體思想”.(解決問題)(1)已知二元一次方程組,則,.(2)某班開展安全教育知識競賽需購買獎品,買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,則購買20支鉛筆、20塊橡皮、20本日記本共需多少元?(3)對于實數(shù),,定義新運算:,其中,,是常數(shù),等式右邊是通常的加法和乘法運算.已知,,求的值.21.如圖,學(xué)校印刷廠與A,D兩地有公路、鐵路相連,從A地購進(jìn)一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運到D地批發(fā),已知公路運價1.5元/(t?km),鐵路運價1.2元/(t?km).這兩次運輸支出公路運費4200元,鐵路運費26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進(jìn)款與運輸費的和多多少元?22.如圖,和的度數(shù)滿足方程組,且,.(1)用解方程的方法求和的度數(shù);(2)求的度數(shù).23.七年(1)(2)兩班各40人參加垃圾分類知識競賽,規(guī)則如圖.比賽中,所有同學(xué)均按要求一對一連線,無多連、少連.(1)分?jǐn)?shù)5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全錯,其余成員中,滿分人數(shù)是未滿分人數(shù)的2倍;七年(2)班所有人都得分,最低分人數(shù)的2倍與其他未滿分人數(shù)之和等于滿分人數(shù).①問(1)班有多少人得滿分?②若(1)班除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,問哪個班的總分高?24.已知,在平面直角坐標(biāo)系中,三角形三個頂點的坐標(biāo)分別為,,,軸,且、滿足.(1)則______;______;______;(2)如圖1,在軸上是否存在點,使三角形的面積等于三角形的面積?若存在,請求出點的坐標(biāo);若不存在,請說明理由;(3)如圖2,連接交于點,點在軸上,若三角形的面積小于三角形的面積,直接寫出的取值范圍是______.25.學(xué)校組織名同學(xué)和名教師參加校外學(xué)習(xí)交流活動現(xiàn)打算選租大、小兩種客車,大客車載客量為人/輛,小客車載客量為人/輛(1)學(xué)校準(zhǔn)備租用輛客車,有幾種租車方案?(2)在(1)的條件下,若大客車租金為元/輛,小客車租金為元/輛,哪種租車方案最省錢?(3)學(xué)校臨時增加名學(xué)生和名教師參加活動,每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊.同學(xué)先坐滿大客車,再依次坐滿小客車,最后一輛小客車至少要有人,請你幫助設(shè)計租車方案26.某治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有甲、乙兩種型號的設(shè)備可供選擇,其中每臺的價格與月處理污水量如下表:甲型乙型價格(萬元/臺)xy處理污水量(噸/月)300260經(jīng)調(diào)查:購買一臺甲型設(shè)備比購買一臺乙型設(shè)備多2萬元,購買3臺甲型設(shè)備比購買4臺乙型設(shè)備少2萬元.(1)求x,y的值;(2)如果治污公司購買污水處理設(shè)備的資金不超過91萬元,求該治污公司有哪幾種購買方案;(3)在(2)的條件下,如果月處理污水量不低于2750噸,為了節(jié)約資金,請為該公司設(shè)計一種最省錢的購買方案.27.如圖,在平面直角坐標(biāo)系中,軸,軸,且,動點從點出發(fā),以每秒的速度,沿路線向點運動;動點從點出發(fā),以每秒的速度,沿路線向點運動.若兩點同時出發(fā),其中一點到達(dá)終點時,運動停止.(Ⅰ)直接寫出三個點的坐標(biāo);(Ⅱ)設(shè)兩點運動的時間為秒,用含的式子表示運動過程中三角形的面積;(Ⅲ)當(dāng)三角形的面積的范圍小于16時,求運動的時間的范圍.28.在平面直角坐標(biāo)系xOy中,已知點M(a,b).如果存在點N(a′,b′),滿足a′=|a+b|,b′=|a﹣b|,則稱點N為點M的“控變點”.(1)點A(﹣1,2)的“控變點”B的坐標(biāo)為;(2)已知點C(m,﹣1)的“控變點”D的坐標(biāo)為(4,n),求m,n的值;(3)長方形EFGH的頂點坐標(biāo)分別為(1,1),(5,1),(5,4),(1,4).如果點P(x,﹣2x)的“控變點”Q在長方形EFGH的內(nèi)部,直接寫出x的取值范圍.29.在平面直角坐標(biāo)系xOy中.點A,B,P不在同一條直線上.對于點P和線段AB給出如下定義:過點P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點P為線段AB的內(nèi)垂點.若垂足Q滿足|AQ-BQ|最小,則稱點P為線段AB的最佳內(nèi)垂點.已知點A(﹣2,1),B(1,1),C(﹣4,3).(1)在點P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點為;(2)點M是線段AB的最佳內(nèi)垂點且到線段AB的距離是2,則點M的坐標(biāo)為;(3)點N在y軸上且為線段AC的內(nèi)垂點,則點N的縱坐標(biāo)n的取值范圍是;(4)已知點D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點,求m的取值范圍.30.如圖,以直角三角形AOC的直角頂點O為原點,以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點.在平面直角坐標(biāo)系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標(biāo)為(,).(1)則A點的坐標(biāo)為;點C的坐標(biāo)為,D點的坐標(biāo)為.(2)已知坐標(biāo)軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負(fù)方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達(dá)A點整個運動隨之結(jié)束.設(shè)運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當(dāng)點E在線段OA上運動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說明理由.【參考答案】***試卷處理標(biāo)記,請不要刪除一、解答題1.(1),;(2)點D的坐標(biāo)為或;(3)之間的數(shù)量關(guān)系,或,理由見解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質(zhì)確定BC∥OA,且BC=OA,可得結(jié)論;(2)分點D在線段OA和在OA延長線兩種情況進(jìn)行計算;(3)分點D在線段OA上時,α+β=θ和在OA延長線α-β=θ兩種情況進(jìn)行計算;【詳解】解:(1)∵,∴a=2,b=3,∴點C的坐標(biāo)為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設(shè)點D的坐標(biāo)為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當(dāng)點D在線段OA上時,由,得解得∴點D的坐標(biāo)為②如圖2,當(dāng)點D在OA得延長線上時,由,得解得∴點D的坐標(biāo)為綜上,點D的坐標(biāo)為或.(3)①如圖1,當(dāng)點D在線段OA上時,過點D作DE∥AB,與CB交于點E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當(dāng)點D在OA得延長線上時,過點D作DE∥AB,與CB得延長線交于點E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數(shù)量關(guān)系,或.【點睛】此題考查四邊形和三角形的綜合題,點的坐標(biāo)和三角形面積的計算方法,平移得性質(zhì),平行線的性質(zhì)和判定,解題的關(guān)鍵是分點D在線段OA上,和OA延長線上兩種情況.2.(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進(jìn)而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,結(jié)合(1)的結(jié)論即可說明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合(1)的結(jié)論即可說明∠BED與∠BFD之間的數(shù)量關(guān)系.【詳解】解:(1)如圖1中,過點E作EG∥AB,則∠BEG=∠ABE,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).3.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線的性質(zhì)以及角平分線的定義,即可得到∠ECG=∠GCF=20°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設(shè)∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當(dāng)點G、F在點E的右側(cè)時,②當(dāng)點G、F在點E的左側(cè)時,依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設(shè)∠EGC=3x°,∠EFC=2x°,①當(dāng)點G、F在點E的右側(cè)時,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當(dāng)點G、F在點E的左側(cè)時,反向延長CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點睛】本題主要考查了平行線的性質(zhì),掌握兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等是解題的關(guān)鍵.4.(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當(dāng)點M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當(dāng)點M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當(dāng)點M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,同位角相等等知識是解題的關(guān)鍵.5.(1);(2)①;②【分析】(1)由平行線的性質(zhì)得到,由折疊的性質(zhì)可知,∠2=∠BFE,再根據(jù)平角的定義求解即可;(2)①由(1)知,,根據(jù)平行線的性質(zhì)得到,再由折疊的性質(zhì)及平角的定義求解即可;②由(1)知,∠BFE=,由可知:,再根據(jù)條件和折疊的性質(zhì)得到,即可求解.【詳解】解:(1)如圖,由題意可知,∴,∵,∴,,由折疊可知.(2)①由題(1)可知,∵,,再由折疊可知:,;②由可知:,由(1)知,,又的度數(shù)比的度數(shù)大,,,,.【點睛】此題考查了平行線的性質(zhì),屬于綜合題,有一定難度,熟記“兩直線平行,同位角相等”、“兩直線平行,內(nèi)錯角相等”及折疊的性質(zhì)是解題的關(guān)鍵.6.(1)證明見解析;(2)證明見解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點睛】本題主要考查平行線的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線的性質(zhì)解答.7.(1)48;(2)28【分析】(1)根據(jù)題中所給的分析方法先求出這幾個數(shù)的立方根都是兩位數(shù),然后根據(jù)第二和第三步求出個位數(shù)和十位數(shù)即可.(2)根據(jù)題中所給的分析方法先求出這幾個數(shù)的立方根都是兩位數(shù),然后根據(jù)第二和第三步求出個位數(shù)和十位數(shù)即可.【詳解】解:(1)第一步:,,,,能確定110592的立方根是個兩位數(shù).第二步:的個位數(shù)是2,,能確定110592的立方根的個位數(shù)是8.第三步:如果劃去110592后面的三位592得到數(shù)110,而,則,可得,由此能確定110592的立方根的十位數(shù)是4,因此110592的立方根是48;(2)第一步:,,,,能確定21952的立方根是個兩位數(shù).第二步:的個位數(shù)是2,,能確定21952的立方根的個位數(shù)是8.第三步:如果劃去21952后面的三位952得到數(shù)21,而,則,可得,由此能確定21952的立方根的十位數(shù)是2,因此21952的立方根是28.即,故答案為:28.【點睛】本題主要考查了數(shù)的立方,理解一個數(shù)的立方的個位數(shù)就是這個數(shù)的個位數(shù)的立方的個位數(shù)是解題的關(guān)鍵,有一定難度.8.(1);(2)見解析;(3)【分析】(1)根據(jù)的定義,可以直接計算得出;(2)設(shè),得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可以得到:;(3)根據(jù)(2)中的結(jié)論,猜想:.【詳解】解:(1)已知,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,;同樣,所以新的三個數(shù)分別是:,這三個新三位數(shù)的和為,.(2)設(shè),得到新的三個數(shù)分別是:,這三個新三位數(shù)的和為,可得到:,即等于x的各數(shù)位上的數(shù)字之和.(3)設(shè),由(2)的結(jié)論可以得到:,,,根據(jù)三位數(shù)的特點,可知必然有:,,故答案是:.【點睛】此題考查了多位數(shù)的數(shù)字特征,每個數(shù)字是10以內(nèi)的自然數(shù)且不為0,解題的關(guān)鍵是:結(jié)合新定義,可以計算出問題的解,注意把握每個數(shù)字都會出現(xiàn)一次的特點,區(qū)別數(shù)字與多為數(shù)的不同.9.(1);(2)±3.【分析】(1)由于4<7<9,可求的整數(shù)部分,進(jìn)一步得出的小數(shù)部分;(2)先求出的整數(shù)部分和小數(shù)部分,再代入代數(shù)式進(jìn)行計算即可.【詳解】解:(1)∵4<7<9,∴,即,∴,∴的整數(shù)部分為2,∴的小數(shù)部分為;(2)∵是的整數(shù)部分,是的小數(shù)部分,9<10<16,∴,即,∴,∴的整數(shù)部分為3,的小數(shù)部分為,即有,,∴9的平方根為±3.∴的平方根為±3.【點睛】本題考查了估算無理數(shù)的大?。豪猛耆椒綌?shù)和算術(shù)平方根對無理數(shù)的大小進(jìn)行估算.10.(1),;(2)C;(3),;(4);(5)-5.【分析】概念學(xué)習(xí):(1)分別按公式進(jìn)行計算即可;(2)根據(jù)定義依次判定即可;深入思考:(3)由冪的乘方和除方的定義進(jìn)行變形,即可得到答案;(4)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),結(jié)果第一個數(shù)不變?yōu)閍,第二個數(shù)及后面的數(shù)變?yōu)?,則;(5)將第二問的規(guī)律代入計算,注意運算順序.【詳解】解:(1);;故答案為:,;(2)A、任何非零數(shù)的圈2次方都等于1;所以選項A正確;B、因為多少個1相除都是1,所以對于任何正整數(shù)n,1?都等于1;

所以選項B正確;C、,,則;故選項C錯誤;D、負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù),故D正確;故選:;(3)根據(jù)題意,,由上述可知:;(4)根據(jù)題意,由(3)可知,;故答案為:(5).【點睛】本題考查了有理數(shù)的混合運算,也是一個新定義的理解與運用;一方面考查了有理數(shù)的乘除法及乘方運算,另一方面也考查了學(xué)生的閱讀理解能力;注意:負(fù)數(shù)的奇數(shù)次方為負(fù)數(shù),負(fù)數(shù)的偶數(shù)次方為正數(shù),同時也要注意分?jǐn)?shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運算,要注意運算順序.11.(1),1;(2)兩位正整數(shù)為39,28,17,的最大值為;(3)①;②【分析】(1)仿照樣例進(jìn)行計算即可;(2)由題設(shè)可以看出交換前原數(shù)的十位上數(shù)字為a,個位上數(shù)字為b,則原數(shù)可以表示為,交換后十位上數(shù)字為b,個位上數(shù)字為a,則交換后數(shù)字可以表示為,根據(jù)“交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為54”確定出a與b的關(guān)系式,進(jìn)而求出所有的兩位數(shù),然后求解確定出的最大值即可;(3)根據(jù)樣例分解計算即可.【詳解】解:(1)∵,∴;∵,∴,故答案為:;1;(2)由題意可得:交換后的數(shù)減去交換前的數(shù)的差為:,∴,∵,∴或或,∴t為39,28,17;∵39=1×39=3×13,∴;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵∴;②∴;故答案為:;【點睛】本題主要考查了有理數(shù)的運算,理解最佳分解的定義,并將其轉(zhuǎn)化為有理數(shù)的運算是解題的關(guān)鍵.12.(1);;(2)①2;3;6.②這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【分析】(1)根據(jù)題意,確定實數(shù)左側(cè)第一個整數(shù)點所對應(yīng)的數(shù)即得;(2)①根據(jù)表格確定乘坐里程的對應(yīng)段,然后將乘坐里程分段計費并累加即得;②根據(jù)表格將每段的費用從左至右依次累加直至費用為7元,進(jìn)而確定7元乘坐的具體里程即得.【詳解】(1)∵∴∵∴故答案為:;.(2)①∵∴3.07公里需要2元∵∴7.93公里所需費用分為兩段即:前4公里2元,后3.93公里1元∴7.93公里所需費用為:(元)∵∴公里所需費用分為三段計費即:前4公里2元,4至12公里2元,12公里至19.17公里2元;∴公里所需費用為:(元)故答案為:2;3;6.②由題意得:乘坐24公里所需費用分為三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需費用為:(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地鐵最大里程為:(公里)∴這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里答:這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【點睛】本題是閱讀材料題,考查了實數(shù)的實際應(yīng)用,根據(jù)材料中的新定義舉一反三并挖掘材料中深層次含義是解題關(guān)鍵.13.(1)2;(2);(3)或【分析】(1)直接利用以為底,進(jìn)行求面積;(2)的面積等于的面積,需要分三種情況進(jìn)行分類討論;(3)根據(jù)推導(dǎo)出,然后分兩種情況進(jìn)行討論,即當(dāng)位于軸負(fù)半軸上時與位于軸正半軸上時.【詳解】解:(1).(2)作如下圖形,進(jìn)行分類討論:①當(dāng)點在軸正半軸上時,,;②當(dāng)點在軸負(fù)半軸上時,,;③當(dāng)點在軸負(fù)半軸上時,,;因此符合條件的點坐標(biāo)有3個,分別是.(3),,,即與點到的距離相等,,,,由可推出,①位于軸負(fù)半軸上時,,,,;②位于軸正半軸上時,,,綜上:點的坐標(biāo)為或.【點睛】本題考查了坐標(biāo)與圖形、三角形的面積、動點問題,解題的關(guān)鍵是要作適當(dāng)輔助線,進(jìn)行分類討論求解.14.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點E作EF∥AB,然后根據(jù)兩直線平行內(nèi)錯角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點B在點A左側(cè)和當(dāng)點B在點A右側(cè),再分三種情況,討論,分別過點E作EF∥AB,由角平分線的定義,平行線的性質(zhì),以及角的和差計算即可.【詳解】解:(1)當(dāng)n=20時,∠ABC=40°,過E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當(dāng)點B在點A左側(cè)時,由(2)可知:∠BED=n°+40°;當(dāng)點B在點A右側(cè)時,如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點睛】此題考查了平行線的判定與性質(zhì),以及角平分線的定義,正確應(yīng)用平行線的性質(zhì)得出各角之間關(guān)系是解題關(guān)鍵.15.(1)B(0,3);(2)S=(3)4【分析】(1)解方程求出a的值,利用三角形的面積公式構(gòu)建方程求出b的值即可解決問題;(2)分兩種情形分別求解:當(dāng)點P在線段OB上時,當(dāng)點P在線段OB的延長線上時;(3)過點K作KH⊥OA用H.根據(jù)S△BPK+S△AKH=S△AOB-S長方形OPKH,構(gòu)建方程求出t,即可解決問題;【詳解】解:(1)∵,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴?4?OB=6,∴OB=3,∴B(0,3).(2)當(dāng)點P在線段OB上時,S=?PQ?PB=×4×(3-t)=-2t+6.當(dāng)點P在線段OB的延長線上時,S=?PQ?PB=×4×(t-3)=2t-6.綜上所述,S=.(3)過點K作KH⊥OA用H.∵S△BPK+S△AKH=S△AOB-S長方形OPKH,∴PK?BP+AH?KH=6-PK?OP,∴××(3-t)+(4-)?t=6-?t,解得t=1,∴S△BPQ=-2t+6=4.【點睛】本題考查三角形綜合題,一元一次方程、三角形的面積、平移變換等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.16.(1)加工廠購進(jìn)A種原料25噸,B種原料15噸;(2)當(dāng)m﹣n<0,即a<b時,方案一運輸總花費少,當(dāng)m﹣n=0,即a=b時,兩種運輸總花費相等,當(dāng)m﹣n>0,即a>b時,方案二運輸總花費少,見解析【分析】(1)設(shè)加工廠購進(jìn)種原料噸,種原料噸,由題意:某加工廠用52500元購進(jìn)、兩種原料共40噸,其中原料每噸1500元,原料每噸1000元.列方程組,解方程組即可;(2)設(shè)公路運輸?shù)膯蝺r為元,鐵路運輸?shù)膯蝺r為元,有兩種方案,方案一:原料公路運輸,原料鐵路運輸;方案二:原料鐵路運輸,原料公路運輸;設(shè)方案一的運輸總花費為元,方案二的運輸總花費為元,分別求出、,再分情況討論即可.【詳解】解:(1)設(shè)加工廠購進(jìn)種原料噸,種原料噸,由題意得:,解得:,答:加工廠購進(jìn)種原料25噸,種原料15噸;(2)設(shè)公路運輸?shù)膯蝺r為元,鐵路運輸?shù)膯蝺r為元,根據(jù)題意,有兩種方案,方案一:原料公路運輸,原料鐵路運輸;方案二:原料鐵路運輸,原料公路運輸;設(shè)方案一的運輸總花費為元,方案二的運輸總花費為元,則,,,當(dāng),即時,方案一運輸總花費少,即原料公路運輸,原料鐵路運輸,總花費少;當(dāng),即時,兩種運輸總花費相等;當(dāng),即時,方案二運輸總花費少,即原料鐵路運輸,原料公路運輸,總花費少.【點睛】本題考查了一元一次不等式的應(yīng)用、二元一次方程組的應(yīng)用等知識;解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,列出二元一次方程組;(2)找出數(shù)量關(guān)系,列出一元一次不等式或一元一次方程.17.(1)5;(2)dAC=11,△ABC不是為“等距三角形”;(3)m≥4【分析】(1)根據(jù)兩點之間的直角距離的定義,結(jié)合O、P兩點的坐標(biāo)即可得出結(jié)論;(2)根據(jù)兩點之間的直角距離的定義,用含x、y的代數(shù)式表示出來d(O,Q)=4,結(jié)合點Q(x,y)在第一象限,即可得出結(jié)論;(3)由點N在直線y=x+3上,設(shè)出點N的坐標(biāo)為(m,m+3),通過尋找d(M,N)的最小值,得出點M(2,-1)到直線y=x+3的直角距離.【詳解】解:(1)由“勾股距”的定義知:dOA=|2-0|+|3-0|=2+3=5,故答案為:5;(2)∵dAB=|4-2|+|2-3|=2+1=3,∴2dAB=6,∵點C在第三象限,∴m<0,n<0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),∵dOC=2dAB,∴-(m+n)=6,即m+n=-6,∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,∵5+11≠12,11+12≠5,12+5≠11,∴△ABC不是為“等距三角形”;(3)點C在x軸上時,點C(m,0),則dAC=|2-m|+3,dBC=|4-m|+2,①當(dāng)m<2時,dAC=2-m+3=5-m,dBC=4-m+2=6-m,若△ABC是“等距三角形”,∴5-m+6-m=11-2m=3,解得:m=4(不合題意),又∵5-m+3=8-m≠6-m,②當(dāng)2≤m<4時,dAC=m-2+3=m+1,dBC=4-m+2=6-m,若△ABC是“等距三角形”,則m+1+6-m=7≠3,6-m+3=m+1,解得:m=4(不和題意),③當(dāng)m≥4時,dAC=m+1,dBC=m-2,若△ABC是“等距三角形”,則m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,∴m≥4時,△ABC是“等距三角形”,綜上所述:△ABC是“等距三角形”時,m的取值范圍為:m≥4.【點睛】本題考查坐標(biāo)與圖形的性質(zhì),關(guān)鍵是對“勾股距”和“等距三角形”新概念的理解,運用“勾股距”和“等距三角形”解題.18.(1);24;(2)①;見解析;②或【分析】(1)由平移的性質(zhì)得出點C坐標(biāo),AC=6,再求出AB,即可得出結(jié)論;(2)①過點作交于,分別用CE表示出兩個三角形的面積,即可得到答案;②根據(jù)題意,可分為兩種情況進(jìn)行討論分析:(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時;當(dāng)交于點,將四邊形分成面積為兩部分時;分別求出點P的坐標(biāo)即可.【詳解】解:(1)∵點A(3,5),將AB向下平移6個單位得線段CD,∴C(3,56),即:C(3,1),由平移得,AC=6,四邊形ABDC是矩形,∵A(3,5),B(7,5),∴AB=73=4,∴CD=4,∴點D的坐標(biāo)為:;∴S四邊形ABDC=AB?AC=4×6=24,即:線段AB平移到CD掃過的面積為24;故答案為:;24;(2)①過點作交于,則,如圖:∴,又∵,∴.②(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時,連接,延長交軸于點,則,∵,又∵,∴,∴,即,∵,∴,∴,∴.(ii)當(dāng)交于點,將四邊形分成面積為兩部分時,連接,延長交軸于點,則.過點作交的延長線于點,則,∴,,即,∵,∴,又∵,即,∴,∴,∴.綜上所述,或.【點睛】此題是幾何變換綜合題,主要考查了平移的性質(zhì),矩形的判定,三角形的面積公式,用分類討論的思想是解本題的關(guān)鍵.19.(1)-1;1;(2)30元;(3)-11【分析】(1)①+②,可得出的值,①-②,得的值;(2)設(shè)購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)“買20支鉛筆、3塊橡皮、2本日記本共需32元,買39支鉛筆、5塊橡皮、3本日記木共需58元”列出方程組,再根據(jù)方程組的特征求出,進(jìn)一步可求出;(3)根據(jù)新定義,將數(shù)值代入新定義里,列方程組求解即可得出答案.【詳解】(1)解:①+②,得;①-②,得;故答案為:-1,1;(2)設(shè)購買1支鉛筆、1塊橡皮、1本日記本分別使用元、元、元,根據(jù)題意,得:①×②-②得∴(元)答:5本日記本共需30元.(3)①②得∴.【點睛】本題考查了三元一次方程組的應(yīng)用,熟練讀懂題干中的“整體思想”是解題的關(guān)鍵.20.(1)-4,4;(2)購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)1【分析】(1)由①-②得2x-2y=-8,則x-y=-4,再由①+②得4x+4y=16,則x+y=4;(2)設(shè)1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意:買5支鉛筆、3塊橡皮、2本日記本共需32元,買9支鉛筆、5塊橡皮、3本日記本共需58元,列出方程組,再由整體思想”求出x+y+z=6,即可求解;(3)由定義新運算:x※y=ax+by+c得1※4=a+4b+c=16①,1※5=a+5b+c=21②,求出a+b+c=1,即可求解.【詳解】解:(1),①-②得:2x-2y=-8,∴x-y=-4,①+②得:4x+4y=16,∴x+y=4,故答案為:-4,4;(2)設(shè)1支鉛筆x元,1塊橡皮y元,1本日記本z元,由題意得:,①×2-②得:x+y+z=6,∴20x+20y+20z=20(x+y+z)=20×6=120,即購買20支鉛筆、20塊橡皮、20本日記本共需120元;(3)∵x※y=ax+by+c,∴1※4=a+4b+c=16①,1※5=a+5b+c=21②,②-①得:b=5,∴a+c=16-4b=-4,∴a+b+c=1,∴1※1=a+b+c=1.【點睛】本題考查了二元一次方程組的應(yīng)用、整體思想以及新運算等知識;熟練掌握整體思想和新運算,找準(zhǔn)等量關(guān)系,列出方程組是解題的關(guān)鍵.21.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設(shè)白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運費4200元,鐵路運費26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進(jìn)款與運輸費的和),進(jìn)行計算即可.【詳解】解:(1)設(shè)白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進(jìn)款與運輸費的和多69520元.【點睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是找準(zhǔn)等量關(guān)系,正確列出二元一次方程組.22.(1),;(2)【分析】(1)把和當(dāng)做未知數(shù),利用加減消元法解二元一次方程組即可;(2)先證明AB∥EF,則可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度數(shù)即可求解.【詳解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【點睛】本題考查了平行線的判定和性質(zhì),解二元一次方程組,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.23.(1)15;(2)①七年級(1)班有24人得滿分;②七年級(2)班的總分高.【分析】(1)分別對連正確的數(shù)量進(jìn)行分析,即可得到答案;(2)①設(shè)七年(1)班滿分人數(shù)有x人,則未滿分的有人,然后列出方程,解方程即可得到答案;②根據(jù)題意,先求出兩個班各分?jǐn)?shù)段的人數(shù),然后求出各班的總分,即可進(jìn)行比較.【詳解】解:(1)根據(jù)題意,連對0個得分為0分;連對一個得分為5分;連對兩個得分為10分;連對四個得分為20分;不存在連對三個的情況,則得15分是不可能的;故答案為:15.(2)①根據(jù)題意,設(shè)七年(1)班滿分人數(shù)有x人,則未滿分的有人,則,解得:,∴(1)班有24人得滿分;②根據(jù)題意,(1)班中除0分外,最低得分人數(shù)與其他未滿分人數(shù)相等,∴(1)班得5分和10分的人數(shù)相等,人數(shù)為:(人);∴(1)班得總分為:(分);由題意,(2)班存在得5分、得10分、得20分,三種情況,設(shè)得5分的有y人,得10分的有z人,滿分20分的有人,∴,∴,∴七(2)班得總分為:(分);∵,∴七(2)班的總分高.【點睛】本題考查了二元一次方程的應(yīng)用,一元一次方程的應(yīng)用,解題的關(guān)鍵是熟練掌握題意,正確掌握題目的等量關(guān)系,列出方程進(jìn)行解題.24.(1)?3,4,4;(2)(0,)或(0,);(3)n<?5或n>?1【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)構(gòu)建方程組,求出a和b,再根據(jù)BC∥x軸,可得c的值;(2)當(dāng)點D在直線AB的下方時,如圖1?1中,延長BC交y軸于E(0,4),連接AE.設(shè)D(0,m).當(dāng)點D在直線AB的上方時,如圖1?2中,連接OB,設(shè)D(0,m).分別構(gòu)建方程,可得結(jié)論.(3)如圖2中,當(dāng)點N在點A的右側(cè)時,連接MN,OB,設(shè)M(a,b),利用面積法求出b的值,再求出S△BNM=S△BCM時,n的值,同法求出當(dāng)點N在點的左側(cè)時,且S△BNM=S△BCM時,n的值,結(jié)合圖象可得結(jié)論.【詳解】解:(1)∵,又∵≥0,|2a?b+10|≥0,∴a+b?1=0且2a?b+10=0,∴a=?3,b=4,∵BC∥x軸,∴c=4,∴a=?3,b=4,c=4,故答案為:?3,4,4;(2)當(dāng)點D在直線AB的下方時,如圖1?1中,延長BC交y軸于E(0,4),連接AE.設(shè)D(0,m).∵S△ABD=S△AED+S△BDE?S△ABE=S△ABC,∴×(4?m)×3+×(4?m)×4?×4×4=×2×4,∴m=;當(dāng)點D在直線AB的上方時,如圖1?2中,連接OB,設(shè)D(0,m).∵S△ABD=S△ADO+S△ODB?S△ABO=S△ABC,∴×m×3+×m×4?×3×4=×2×4,∴m=.綜上所述,滿足條件的點D的坐標(biāo)為(0,)或(0,).(3)如圖2中,當(dāng)點N點A的右側(cè)時,連接MN,OB.設(shè)M(a,b),∵S△BCM=S△OBC?(S△AOB?S△AOM),∴×2×(4?b)=×2×4?(×3×4?12×3×b),解得b=,當(dāng)S△BNM=S△BCM時,則有×(n+3)×4?×(n+3)×=×2×(4?),解得n=?1,當(dāng)點N在點A的左側(cè)時,且S△BNM=S△BCM時,同法可得n=?5,觀察圖象可知,滿足條件的n的值為n<?5或n>?1.【點睛】本題屬于三角形綜合題,考查了三角形的面積,非負(fù)數(shù)的性質(zhì),平行線的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,學(xué)會利用未知數(shù)構(gòu)建方程解決問題,對于初一學(xué)生來說題目有一定的難度.25.(1)有3種租車方案;(2)租5輛大客車,2輛小客車最省錢;(3)租用大客車2輛,小客車7輛;或租10輛小客車.【分析】(1)設(shè)租大客車x輛,根據(jù)題意可列出關(guān)于x的不等式,求得不等式的解集后,再根據(jù)x為整數(shù)即可確定租車方案;(2)依次計算(1)題中的租車方案,比較結(jié)果即可得出答案;(3)設(shè)租大客車x輛,小客車y輛,根據(jù)客車的座位數(shù)滿足的條件可確定x、y滿足的不等式組,進(jìn)一步可確定x、y滿足的方程,再由帶隊的老師數(shù)可確定x、y滿足的不等式,二者結(jié)合即可確定租車方案.【詳解】解:(1)由題意知:本次乘車共270+7=277(人).設(shè)租大客車x輛,則小客車(7-x)輛,根據(jù)題意,得,解得:,因為x為整數(shù),且x≤7,所以x=5,6,7,即有3種租車方案.(2)方案一:當(dāng)x=7,所租7輛皆為大客車時,租車費用為:7×400=2800(元),方案二:當(dāng)x=6,所租6輛為大客車,1輛為小客車時,租車費用為:6×400+300=2700(元),方案三:當(dāng)x=5,所租5輛為大客車,2輛為小客車時,租車費用為:5×400+300×2=2600(元),所以,租5輛大客車,2輛小客車最省錢.(3)乘車總?cè)藬?shù)為270+7+10+4=291(人),因為最后一輛小客車最少20人,則客車空位不能大于10個,所以客車的總座位數(shù)應(yīng)滿足:291≤座位數(shù)≤301.設(shè)租大客車x輛,小客車y輛,則291≤45x+30y≤301,即,∵x、y均為整數(shù),∴3x+2y=20,即.∵每輛大客車有2名教師帶隊,每輛小客車至少有名教師帶隊,∴2x+y≤11.把代入上式,得,解得.又∵x為整數(shù)且是2的倍數(shù),∴x=2,y=7或x=0,y=10.故租車方案為:租大客車2輛,小客車7輛;或租10輛小客車.【點睛】本題考查了不等式和不等式組的實際應(yīng)用、二元一次方程的整數(shù)解等知識,正確理解題意,列出不等式和不等式組是解題的關(guān)鍵.26.(1);(2)該公司有6種購買方案,方案1:購買10臺乙型設(shè)備;方案2:購買1臺甲型設(shè)備,9臺乙型設(shè)備;方案3:購買2臺甲型設(shè)備,8臺乙型設(shè)備;方案4:購買3臺甲型設(shè)備,7臺乙型設(shè)備;方案5:購買4臺甲型設(shè)備,6臺乙型設(shè)備;方案6:購買5臺甲型設(shè)備,5臺乙型設(shè)備;(3)最省錢的購買方案為:購買4臺甲型設(shè)備,6臺乙型設(shè)備.【分析】(1)由一臺A型設(shè)備的價格是x萬元,一臺乙型設(shè)備的價格是y萬元,根據(jù)題意得等量關(guān)系:購買一臺甲型設(shè)備-購買一臺乙型設(shè)備=2萬元,購買4臺乙型設(shè)備-購買3臺甲型設(shè)備=2萬元,根據(jù)等量關(guān)系,列出方程組,再解即可;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論