2024年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)_第1頁(yè)
2024年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)_第2頁(yè)
2024年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)_第3頁(yè)
2024年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)_第4頁(yè)
2024年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024年人教版中學(xué)七7年級(jí)下冊(cè)數(shù)學(xué)期末解答題培優(yōu)一、解答題1.已知在的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1.(1)計(jì)算圖①中正方形的面積與邊長(zhǎng).(2)利用圖②中的正方形網(wǎng)格,作出面積為8的正方形,并在此基礎(chǔ)上建立適當(dāng)?shù)臄?shù)軸,在數(shù)軸上表示實(shí)數(shù)和.2.如圖,這是由8個(gè)同樣大小的立方體組成的魔方,體積為64.(1)求出這個(gè)魔方的棱長(zhǎng);(2)圖中陰影部分是一個(gè)正方形ABCD,求出陰影部分的邊長(zhǎng).3.如圖,用兩個(gè)邊長(zhǎng)為10的小正方形拼成一個(gè)大的正方形.(1)求大正方形的邊長(zhǎng)?(2)若沿此大正方形邊的方向出一個(gè)長(zhǎng)方形,能否使裁出的長(zhǎng)方形的長(zhǎng)寬之比為3:2,且面積為480cm2?4.如圖,用兩個(gè)邊長(zhǎng)為15的小正方形拼成一個(gè)大的正方形,(1)求大正方形的邊長(zhǎng)?(2)若沿此大正方形邊的方向剪出一個(gè)長(zhǎng)方形,能否使剪出的長(zhǎng)方形紙片的長(zhǎng)寬之比為4:3,且面積為720cm2?5.小麗想用一塊面積為的正方形紙片,如圖所示,沿著邊的方向裁出一塊面積為的長(zhǎng)方形紙片,使它的長(zhǎng)是寬的2倍.她不知能否裁得出來(lái),正在發(fā)愁.小明見(jiàn)了說(shuō):“別發(fā)愁,一定能用一塊面積大的紙片裁出一塊面積小的紙片.”你同意小明的說(shuō)法嗎?你認(rèn)為小麗能用這塊紙片裁出符合要求的紙片嗎?為什么?二、解答題6.如圖,直線(xiàn)AB∥直線(xiàn)CD,線(xiàn)段EF∥CD,連接BF、CF.(1)求證:∠ABF+∠DCF=∠BFC;(2)連接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求證:CE平分∠BCD;(3)在(2)的條件下,G為EF上一點(diǎn),連接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度數(shù).7.如圖,已知直線(xiàn),點(diǎn)在直線(xiàn)上,點(diǎn)在直線(xiàn)上,點(diǎn)在點(diǎn)的右側(cè),平分平分,直線(xiàn)交于點(diǎn).(1)若時(shí),則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線(xiàn)段向右平行移動(dòng),其他條件不變,請(qǐng)畫(huà)出相應(yīng)圖形,并直接寫(xiě)出的度數(shù).(用含的代數(shù)式表示)8.已知:如圖,直線(xiàn)AB//CD,直線(xiàn)EF交AB,CD于P,Q兩點(diǎn),點(diǎn)M,點(diǎn)N分別是直線(xiàn)CD,EF上一點(diǎn)(不與P,Q重合),連接PM,MN.(1)點(diǎn)M,N分別在射線(xiàn)QC,QF上(不與點(diǎn)Q重合),當(dāng)∠APM+∠QMN=90°時(shí),①試判斷PM與MN的位置關(guān)系,并說(shuō)明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過(guò)N點(diǎn)作AB的平行線(xiàn))(2)點(diǎn)M,N分別在直線(xiàn)CD,EF上時(shí),請(qǐng)你在備用圖中畫(huà)出滿(mǎn)足PM⊥MN條件的圖形,并直接寫(xiě)出此時(shí)∠APM與∠QMN的關(guān)系.(注:此題說(shuō)理時(shí)不能使用沒(méi)有學(xué)過(guò)的定理)9.如圖,已知直線(xiàn)射線(xiàn),.是射線(xiàn)上一動(dòng)點(diǎn),過(guò)點(diǎn)作交射線(xiàn)于點(diǎn),連接.作,交直線(xiàn)于點(diǎn),平分.(1)若點(diǎn),,都在點(diǎn)的右側(cè).①求的度數(shù);②若,求的度數(shù).(不能使用“三角形的內(nèi)角和是”直接解題)(2)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,是否存在這樣的偕形,使?若存在,直接寫(xiě)出的度數(shù);若不存在.請(qǐng)說(shuō)明理由.10.直線(xiàn)AB∥CD,點(diǎn)P為平面內(nèi)一點(diǎn),連接AP,CP.(1)如圖①,點(diǎn)P在直線(xiàn)AB,CD之間,當(dāng)∠BAP=60°,∠DCP=20°時(shí),求∠APC的度數(shù);(2)如圖②,點(diǎn)P在直線(xiàn)AB,CD之間,∠BAP與∠DCP的角平分線(xiàn)相交于K,寫(xiě)出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖③,點(diǎn)P在直線(xiàn)CD下方,當(dāng)∠BAK=∠BAP,∠DCK=∠DCP時(shí),寫(xiě)出∠AKC與∠APC之間的數(shù)量關(guān)系,并說(shuō)明理由.三、解答題11.如圖,以直角三角形的直角頂點(diǎn)為原點(diǎn),以、所在直線(xiàn)為軸和軸建立平面直角坐標(biāo)系,點(diǎn),滿(mǎn)足.(1)點(diǎn)的坐標(biāo)為_(kāi)_____;點(diǎn)的坐標(biāo)為_(kāi)_____.(2)如圖1,已知坐標(biāo)軸上有兩動(dòng)點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)出發(fā)沿軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),點(diǎn)從點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿軸正方向移動(dòng),點(diǎn)到達(dá)點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.的中點(diǎn)的坐標(biāo)是,設(shè)運(yùn)動(dòng)時(shí)間為.問(wèn):是否存在這樣的,使?若存在,請(qǐng)求出的值:若不存在,請(qǐng)說(shuō)明理由.(3)如圖2,過(guò)作,作交于點(diǎn),點(diǎn)是線(xiàn)段上一動(dòng)點(diǎn),連交于點(diǎn),當(dāng)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)的過(guò)程中,的值是否會(huì)發(fā)生變化?若不變,請(qǐng)求出它的值:若變化,請(qǐng)說(shuō)明理由.12.已知點(diǎn)A,B,O在一條直線(xiàn)上,以點(diǎn)O為端點(diǎn)在直線(xiàn)AB的同一側(cè)作射線(xiàn),,使.(1)如圖①,若平分,求的度數(shù);(2)如圖②,將繞點(diǎn)O按逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)到某個(gè)位置時(shí),使得所在射線(xiàn)把分成兩個(gè)角.①若,求的度數(shù);②若(n為正整數(shù)),直接用含n的代數(shù)式表示.13.已知,交AC于點(diǎn)E,交AB于點(diǎn)F.(1)如圖1,若點(diǎn)D在邊BC上,①補(bǔ)全圖形;②求證:.(2)點(diǎn)G是線(xiàn)段AC上的一點(diǎn),連接FG,DG.①若點(diǎn)G是線(xiàn)段AE的中點(diǎn),請(qǐng)你在圖2中補(bǔ)全圖形,判斷,,之間的數(shù)量關(guān)系,并證明;②若點(diǎn)G是線(xiàn)段EC上的一點(diǎn),請(qǐng)你直接寫(xiě)出,,之間的數(shù)量關(guān)系.14.已知,直角的邊與直線(xiàn)a分別相交于O、G兩點(diǎn),與直線(xiàn)b分別交于E、F點(diǎn),.(1)將直角如圖1位置擺放,如果,則______;(2)將直角如圖2位置擺放,N為AC上一點(diǎn),,請(qǐng)寫(xiě)出與之間的等量關(guān)系,并說(shuō)明理由.(3)將直角如圖3位置擺放,若,延長(zhǎng)AC交直線(xiàn)b于點(diǎn)Q,點(diǎn)P是射線(xiàn)GF上一動(dòng)點(diǎn),探究,與的數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出結(jié)論.15.如圖,兩個(gè)形狀,大小完全相同的含有30°、60°的三角板如圖放置,PA、PB與直線(xiàn)MN重合,且三角板PAC,三角板PBD均可以繞點(diǎn)P逆時(shí)針旋轉(zhuǎn).(1)①如圖1,∠DPC=度.②我們規(guī)定,如果兩個(gè)三角形只要有一組邊平行,我們就稱(chēng)這兩個(gè)三角形為“孿生三角形”,如圖1,三角板BPD不動(dòng),三角板PAC從圖示位置開(kāi)始每秒10°逆時(shí)針旋轉(zhuǎn)一周(0°旋轉(zhuǎn)360°),問(wèn)旋轉(zhuǎn)時(shí)間t為多少時(shí),這兩個(gè)三角形是“孿生三角形”.(2)如圖3,若三角板PAC的邊PA從PN處開(kāi)始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速3°/秒,同時(shí)三角板PBD的邊PB從PM處開(kāi)始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速2°/秒,在兩個(gè)三角板旋轉(zhuǎn)過(guò)程中,(PC轉(zhuǎn)到與PM重合時(shí),兩三角板都停止轉(zhuǎn)動(dòng)).設(shè)兩個(gè)三角板旋轉(zhuǎn)時(shí)間為t秒,以下兩個(gè)結(jié)論:①為定值;②∠BPN+∠CPD為定值,請(qǐng)選擇你認(rèn)為對(duì)的結(jié)論加以證明.四、解答題16.如圖,直線(xiàn),、是、上的兩點(diǎn),直線(xiàn)與、分別交于點(diǎn)、,點(diǎn)是直線(xiàn)上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合),連接、.(1)當(dāng)點(diǎn)與點(diǎn)、在一直線(xiàn)上時(shí),,,則_____.(2)若點(diǎn)與點(diǎn)、不在一直線(xiàn)上,試探索、、之間的關(guān)系,并證明你的結(jié)論.17.在中,射線(xiàn)平分交于點(diǎn),點(diǎn)在邊上運(yùn)動(dòng)(不與點(diǎn)重合),過(guò)點(diǎn)作交于點(diǎn).(1)如圖1,點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;(2)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),的角平分線(xiàn)所在直線(xiàn)與射線(xiàn)交于點(diǎn).試探究與之間的數(shù)量關(guān)系,并說(shuō)明理由.18.模型與應(yīng)用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應(yīng)用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線(xiàn)M1O與∠CMnMn-1的角平分線(xiàn)MnO交于點(diǎn)O,若∠M1OMn=m°.在(2)的基礎(chǔ)上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)19.Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若點(diǎn)P在線(xiàn)段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=°;(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:;(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線(xiàn)上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說(shuō)明理由.(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4)所示,則∠α、∠1、∠2之間的關(guān)系為:.20.如圖,已知直線(xiàn)a∥b,∠ABC=100°,BD平分∠ABC交直線(xiàn)a于點(diǎn)D,線(xiàn)段EF在線(xiàn)段AB的左側(cè),線(xiàn)段EF沿射線(xiàn)AD的方向平移,在平移的過(guò)程中BD所在的直線(xiàn)與EF所在的直線(xiàn)交于點(diǎn)P.問(wèn)∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點(diǎn)P在直線(xiàn)a、直線(xiàn)b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).【參考答案】一、解答題1.(1)正方形的面積為10,正方形的邊長(zhǎng)為;(2)見(jiàn)解析【分析】(1)利用正方形的面積減去4個(gè)直角三角形的面積即可求出正方形的面積,然后根據(jù)算術(shù)平方根的意義即可求出邊長(zhǎng);(2)根據(jù)(1)的方法畫(huà)解析:(1)正方形的面積為10,正方形的邊長(zhǎng)為;(2)見(jiàn)解析【分析】(1)利用正方形的面積減去4個(gè)直角三角形的面積即可求出正方形的面積,然后根據(jù)算術(shù)平方根的意義即可求出邊長(zhǎng);(2)根據(jù)(1)的方法畫(huà)出圖形,然后建立數(shù)軸,根據(jù)算術(shù)平方根的意義即可表示出結(jié)論.【詳解】解:(1)正方形的面積為4×4-4××3×1=10則正方形的邊長(zhǎng)為;(2)如下圖所示,正方形的面積為4×4-4××2×2=8,所以該正方形即為所求,如圖建立數(shù)軸,以數(shù)軸的原點(diǎn)為圓心,正方形的邊長(zhǎng)為半徑作弧,分別交數(shù)軸于兩點(diǎn)∴正方形的邊長(zhǎng)為∴弧與數(shù)軸的左邊交點(diǎn)為,右邊交點(diǎn)為,實(shí)數(shù)和在數(shù)軸上如圖所示.【點(diǎn)睛】此題考查的是求網(wǎng)格中圖形的面積和實(shí)數(shù)與數(shù)軸,掌握算術(shù)平方根的意義和利用數(shù)軸表示無(wú)理數(shù)是解題關(guān)鍵.2.(1)棱長(zhǎng)為4;(2)邊長(zhǎng)為:(或)【分析】(1)由立方體的體積為棱長(zhǎng)的立方可以得到答案;(2)用勾股定理直接計(jì)算得到答案.【詳解】解:(1)設(shè)正方體的棱長(zhǎng)為,則,所以,即正方體的棱長(zhǎng)為4.解析:(1)棱長(zhǎng)為4;(2)邊長(zhǎng)為:(或)【分析】(1)由立方體的體積為棱長(zhǎng)的立方可以得到答案;(2)用勾股定理直接計(jì)算得到答案.【詳解】解:(1)設(shè)正方體的棱長(zhǎng)為,則,所以,即正方體的棱長(zhǎng)為4.(2)因?yàn)檎襟w的棱長(zhǎng)為4,所以AB=.【點(diǎn)睛】本題考查的是立方根與算術(shù)平方根的理解與計(jì)算,由實(shí)際的情境去理解問(wèn)題本身就是求一個(gè)數(shù)的立方根與算術(shù)平方根是關(guān)鍵.3.(1)大正方形的邊長(zhǎng)是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長(zhǎng);(2)先求出長(zhǎng)方形的邊長(zhǎng),再判斷即可.【詳解】(1)大正方形的邊長(zhǎng)是(2)設(shè)長(zhǎng)方形紙解析:(1)大正方形的邊長(zhǎng)是;(2)不能【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長(zhǎng);(2)先求出長(zhǎng)方形的邊長(zhǎng),再判斷即可.【詳解】(1)大正方形的邊長(zhǎng)是(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為3xcm,寬為2xcm,則3x?2x=480,解得:x=因?yàn)椋匝卮舜笳叫芜叺姆较蚣舫鲆粋€(gè)長(zhǎng)方形,不能使剪出的長(zhǎng)方形紙片的長(zhǎng)寬之比為2:3,且面積為480cm2.【點(diǎn)睛】本題考查算術(shù)平方根,解題的關(guān)鍵是能根據(jù)題意列出算式.4.(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長(zhǎng);(2)先求出長(zhǎng)方形的邊長(zhǎng),再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根據(jù)已知正方形的面積求出大正方形的面積,即可求出邊長(zhǎng);(2)先求出長(zhǎng)方形的邊長(zhǎng),再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正方形的邊長(zhǎng)是:=30;(2)設(shè)長(zhǎng)方形紙片的長(zhǎng)為4xcm,寬為3xcm,則4x?3x=720,解得:x=,4x==>30,所以沿此大正方形邊的方向剪出一個(gè)長(zhǎng)方形,不能使剪出的長(zhǎng)方形紙片的長(zhǎng)寬之比為4:3,且面積為720cm2.故答案為(1)30;(2)不能.【點(diǎn)睛】本題考查算術(shù)平方根,解題的關(guān)鍵是能根據(jù)題意列出算式.5.不同意,理由見(jiàn)解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,解析:不同意,理由見(jiàn)解析【分析】先求得正方形的邊長(zhǎng),然后設(shè)設(shè)長(zhǎng)方形寬為,長(zhǎng)為,然后依據(jù)矩形的面積為20列方程求得的值,從而得到矩形的邊長(zhǎng),從而可作出判斷.【詳解】解:不同意,因?yàn)檎叫蔚拿娣e為,故邊長(zhǎng)為設(shè)長(zhǎng)方形寬為,則長(zhǎng)為長(zhǎng)方形面積∴,解得(負(fù)值舍去)長(zhǎng)為即長(zhǎng)方形的長(zhǎng)大于正方形的邊長(zhǎng),所以不能裁出符合要求的長(zhǎng)方形紙片【點(diǎn)睛】本題主要考查的是算術(shù)平方根的性質(zhì),熟練掌握算術(shù)平方根的性質(zhì)是解題的關(guān)鍵.二、解答題6.(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線(xiàn)的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;解析:(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)∠FBE=35°.【分析】(1)根據(jù)平行線(xiàn)的性質(zhì)得出∠ABF=∠BFE,∠DCF=∠EFC,進(jìn)而解答即可;(2)由(1)的結(jié)論和垂直的定義解答即可;(3)由(1)的結(jié)論和三角形的角的關(guān)系解答即可.【詳解】證明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)設(shè)∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【點(diǎn)睛】本題主要考查平行線(xiàn)的性質(zhì),解決本題的關(guān)鍵是根據(jù)平行線(xiàn)的性質(zhì)解答.7.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過(guò)點(diǎn)E作EF∥AB,然后根據(jù)兩直線(xiàn)平行內(nèi)錯(cuò)角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過(guò)點(diǎn)E作EF∥AB,然后根據(jù)兩直線(xiàn)平行內(nèi)錯(cuò)角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當(dāng)點(diǎn)B在點(diǎn)A左側(cè)和當(dāng)點(diǎn)B在點(diǎn)A右側(cè),再分三種情況,討論,分別過(guò)點(diǎn)E作EF∥AB,由角平分線(xiàn)的定義,平行線(xiàn)的性質(zhì),以及角的和差計(jì)算即可.【詳解】解:(1)當(dāng)n=20時(shí),∠ABC=40°,過(guò)E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當(dāng)點(diǎn)B在點(diǎn)A左側(cè)時(shí),由(2)可知:∠BED=n°+40°;當(dāng)點(diǎn)B在點(diǎn)A右側(cè)時(shí),如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過(guò)點(diǎn)E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點(diǎn)睛】此題考查了平行線(xiàn)的判定與性質(zhì),以及角平分線(xiàn)的定義,正確應(yīng)用平行線(xiàn)的性質(zhì)得出各角之間關(guān)系是解題關(guān)鍵.8.(1)①PM⊥MN,理由見(jiàn)解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線(xiàn)的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條解析:(1)①PM⊥MN,理由見(jiàn)解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線(xiàn)的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過(guò)點(diǎn)N作NH∥CD,利用角平分線(xiàn)的定義以及平行線(xiàn)的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線(xiàn)的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見(jiàn)解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過(guò)點(diǎn)N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當(dāng)點(diǎn)M,N分別在射線(xiàn)QC,QF上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線(xiàn)QC,線(xiàn)段PQ上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當(dāng)點(diǎn)M,N分別在射線(xiàn)QD,QF上時(shí),如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點(diǎn)睛】本題主要考查了平行線(xiàn)的判定與性質(zhì),熟練掌握兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);兩直線(xiàn)平行,同位角相等等知識(shí)是解題的關(guān)鍵.9.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線(xiàn)的性質(zhì)以及角平分線(xiàn)的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線(xiàn)的性質(zhì)以及角平分線(xiàn)的定義,即可得到∠ECG=∠GCF=20°解析:(1)①35°;(2)55°;(2)存在,或【分析】(1)①依據(jù)平行線(xiàn)的性質(zhì)以及角平分線(xiàn)的定義,即可得到∠PCG的度數(shù);②依據(jù)平行線(xiàn)的性質(zhì)以及角平分線(xiàn)的定義,即可得到∠ECG=∠GCF=20°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)設(shè)∠EGC=3x,∠EFC=2x,則∠GCF=3x-2x=x,分兩種情況討論:①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),依據(jù)等量關(guān)系列方程求解即可.【詳解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°?40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,設(shè)∠EGC=3x°,∠EFC=2x°,①當(dāng)點(diǎn)G、F在點(diǎn)E的右側(cè)時(shí),∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,則∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,則∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②當(dāng)點(diǎn)G、F在點(diǎn)E的左側(cè)時(shí),反向延長(zhǎng)CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【點(diǎn)睛】本題主要考查了平行線(xiàn)的性質(zhì),掌握兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ);兩直線(xiàn)平行,內(nèi)錯(cuò)角相等是解題的關(guān)鍵.10.(1)80°;(2)∠AKC=∠APC,理由見(jiàn)解析;(3)∠AKC=∠APC,理由見(jiàn)解析【分析】(1)先過(guò)P作PE∥AB,根據(jù)平行線(xiàn)的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠解析:(1)80°;(2)∠AKC=∠APC,理由見(jiàn)解析;(3)∠AKC=∠APC,理由見(jiàn)解析【分析】(1)先過(guò)P作PE∥AB,根據(jù)平行線(xiàn)的性質(zhì)即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據(jù)∠APC=∠APE+∠CPE=∠BAP+∠DCP進(jìn)行計(jì)算即可;(2)過(guò)K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進(jìn)而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據(jù)角平分線(xiàn)的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進(jìn)而得到∠AKC=∠APC;(3)過(guò)K作KE∥AB,根據(jù)KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進(jìn)而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據(jù)已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進(jìn)而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過(guò)P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過(guò)K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過(guò)P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線(xiàn)相交于點(diǎn)K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過(guò)K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過(guò)P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì)和角平分線(xiàn)的定義,解題的關(guān)鍵是作出平行線(xiàn)構(gòu)造內(nèi)錯(cuò)角相等計(jì)算.三、解答題11.(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不變,值為2【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,再利用中點(diǎn)坐標(biāo)公式即可得出答案;(2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列出關(guān)于t的方程,求得t的值即可;(3)過(guò)H點(diǎn)作AC的平行線(xiàn),交x軸于P,先判定OG∥AC,再根據(jù)角的和差關(guān)系以及平行線(xiàn)的性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入進(jìn)行計(jì)算即可.【詳解】解:(1)∵+|b-2|=0,∴a-2b=0,b-2=0,解得a=4,b=2,∴A(0,4),C(2,0).(2)存在,理由:如圖1中,D(1,2),由條件可知:P點(diǎn)從C點(diǎn)運(yùn)動(dòng)到O點(diǎn)時(shí)間為2秒,Q點(diǎn)從O點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí)間為2秒,∴0<t≤2時(shí),點(diǎn)Q在線(xiàn)段AO上,即CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=?OP?yD=(2-t)×2=2-t,S△DOQ=?OQ?xD=×2t×1=t,∵S△ODP=S△ODQ,∴2-t=t,∴t=1.(3)結(jié)論:的值不變,其值為2.理由如下:如圖2中,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如圖,過(guò)H點(diǎn)作AC的平行線(xiàn),交x軸于P,則∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴=2.【點(diǎn)睛】本題主要考查三角形綜合題、非負(fù)數(shù)的性質(zhì)、三角形的面積、平行線(xiàn)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題.12.(1);(2)①;②.【分析】(1)依據(jù)角平分線(xiàn)的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補(bǔ)角的性質(zhì)可求得結(jié)論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最解析:(1);(2)①;②.【分析】(1)依據(jù)角平分線(xiàn)的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補(bǔ)角的性質(zhì)可求得結(jié)論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最后依據(jù)角的和差和鄰補(bǔ)角的性質(zhì)可求得結(jié)論;②根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關(guān)系可得,最后依據(jù)角的和差和鄰補(bǔ)角的性質(zhì)可求得結(jié)論.【詳解】解:(1)∵平分,,∴,∴,∴,∴;(2)①∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴;②∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴.【點(diǎn)睛】本題考查鄰補(bǔ)角的計(jì)算,角的和差,角平分線(xiàn)的有關(guān)計(jì)算.能正確識(shí)圖,利用角的和差求得相應(yīng)角的度數(shù)是解題關(guān)鍵.13.(1)①見(jiàn)解析;②;見(jiàn)解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫(huà)出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①見(jiàn)解析;②;見(jiàn)解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫(huà)出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進(jìn)而得出∠EDF=∠A;(2)①過(guò)G作GH∥AB,依據(jù)平行線(xiàn)的性質(zhì),即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過(guò)G作GH∥AB,依據(jù)平行線(xiàn)的性質(zhì),即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【詳解】解:(1)①如圖,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如圖2所示,過(guò)G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如圖所示,過(guò)G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【點(diǎn)睛】本題考查了平行線(xiàn)的判定和性質(zhì):兩直線(xiàn)平行,內(nèi)錯(cuò)角相等.正確的作出輔助線(xiàn)是解題的關(guān)鍵.14.(1)136°;(2)∠AOG+∠NEF=90°,理由見(jiàn)解析;(3)當(dāng)點(diǎn)P在GF上時(shí),∠OPQ=140°﹣∠POQ+∠PQF;當(dāng)點(diǎn)P在線(xiàn)段GF的延長(zhǎng)線(xiàn)上時(shí),140°﹣∠POQ=∠OPQ+∠PQF.解析:(1)136°;(2)∠AOG+∠NEF=90°,理由見(jiàn)解析;(3)當(dāng)點(diǎn)P在GF上時(shí),∠OPQ=140°﹣∠POQ+∠PQF;當(dāng)點(diǎn)P在線(xiàn)段GF的延長(zhǎng)線(xiàn)上時(shí),140°﹣∠POQ=∠OPQ+∠PQF.【分析】(1)如圖1,作CP∥a,則CP∥a∥b,根據(jù)平行線(xiàn)的性質(zhì)可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后利用∠ACP+∠BCP=90°即可求得答案;(2)如圖2,作CP∥a,則CP∥a∥b,根據(jù)平行線(xiàn)的性質(zhì)可得∠AOG=∠ACP,∠BCP+∠CEF=180°,然后結(jié)合已知條件可得∠BCP=∠NEF,然后利用∠ACP+∠BCP=90°即可得到結(jié)論;(3)分兩種情況,如圖3,當(dāng)點(diǎn)P在GF上時(shí),過(guò)點(diǎn)P作PN∥OG,則NP∥OG∥EF,根據(jù)平行線(xiàn)的性質(zhì)可推出∠OPQ=∠GOP+∠PQF,進(jìn)一步可得結(jié)論;如圖4,當(dāng)點(diǎn)P在線(xiàn)段GF的延長(zhǎng)線(xiàn)上時(shí),同上面方法利用平行線(xiàn)的性質(zhì)解答即可.【詳解】解:(1)如圖1,作CP∥a,∵,∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案為136°;(2)∠AOG+∠NEF=90°.理由如下:如圖2,作CP∥a,則CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如圖3,當(dāng)點(diǎn)P在GF上時(shí),過(guò)點(diǎn)P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如圖4,當(dāng)點(diǎn)P在線(xiàn)段GF的延長(zhǎng)線(xiàn)上時(shí),過(guò)點(diǎn)P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì)以及平行公理的推論等知識(shí),屬于??碱}型,正確添加輔助線(xiàn)、靈活應(yīng)用平行線(xiàn)的判定和性質(zhì)是解題的關(guān)鍵.15.(1)①90;②t為或或或或或或;(2)①正確,②錯(cuò)誤,證明見(jiàn)解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時(shí),有兩種情況,畫(huà)出符合題意的圖形,利用平行線(xiàn)的性質(zhì)與角的和解析:(1)①90;②t為或或或或或或;(2)①正確,②錯(cuò)誤,證明見(jiàn)解析.【分析】(1)①由平角的定義,結(jié)合已知條件可得:從而可得答案;②當(dāng)時(shí),有兩種情況,畫(huà)出符合題意的圖形,利用平行線(xiàn)的性質(zhì)與角的和差求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí),有兩種情況,畫(huà)出符合題意的圖形,利用平行線(xiàn)的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí),有兩種情況,畫(huà)出符合題意的圖形,利用平行線(xiàn)的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí),畫(huà)出符合題意的圖形,利用平行線(xiàn)的性質(zhì)與角的和差關(guān)系求解旋轉(zhuǎn)角,可得旋轉(zhuǎn)時(shí)間;當(dāng)時(shí)的旋轉(zhuǎn)時(shí)間與相同;(2)分兩種情況討論:當(dāng)在上方時(shí),當(dāng)在下方時(shí),①分別用含的代數(shù)式表示,從而可得的值;②分別用含的代數(shù)式表示,得到是一個(gè)含的代數(shù)式,從而可得答案.【詳解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案為90;②如圖1﹣1,當(dāng)BD∥PC時(shí),∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為3秒;如圖1﹣2,當(dāng)PC∥BD時(shí),∵∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為180°+30°=210°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為21秒,如圖1﹣3,當(dāng)PA∥BD時(shí),即點(diǎn)D與點(diǎn)C重合,此時(shí)∠ACP=∠BPD=30°,則AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為90°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為9秒,如圖1﹣4,當(dāng)PA∥BD時(shí),∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為90°+180°=270°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為27秒,如圖1﹣5,當(dāng)AC∥DP時(shí),∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為60°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為6秒,如圖1﹣6,當(dāng)時(shí),∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為秒,如圖1﹣7,當(dāng)AC∥BD時(shí),∵AC∥BD,∴∠DBP=∠BAC=90°,∴點(diǎn)A在MN上,∴三角板PAC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)的角度為180°,∵轉(zhuǎn)速為10°/秒,∴旋轉(zhuǎn)時(shí)間為18秒,當(dāng)時(shí),如圖1-3,1-4,旋轉(zhuǎn)時(shí)間分別為:,綜上所述:當(dāng)t為或或或或或或時(shí),這兩個(gè)三角形是“孿生三角形”;(2)如圖,當(dāng)在上方時(shí),①正確,理由如下:設(shè)運(yùn)動(dòng)時(shí)間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時(shí)間在變化,不為定值,結(jié)論錯(cuò)誤.當(dāng)在下方時(shí),如圖,①正確,理由如下:設(shè)運(yùn)動(dòng)時(shí)間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=∠APN=3t.∴∠CPD=∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時(shí)間在變化,不為定值,結(jié)論錯(cuò)誤.綜上:①正確,②錯(cuò)誤.【點(diǎn)睛】本題考查的是角的和差倍分關(guān)系,平行線(xiàn)的性質(zhì)與判定,角的動(dòng)態(tài)定義(旋轉(zhuǎn)角)的理解,掌握分類(lèi)討論的思想是解題的關(guān)鍵.四、解答題16.(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線(xiàn)上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出解析:(1)120°;(2)∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,證明見(jiàn)詳解.【分析】(1)根據(jù)題意,當(dāng)點(diǎn)與點(diǎn)、在一直線(xiàn)上時(shí),作出圖形,由AB∥CD,∠FHP=60°,可以推出=60°,計(jì)算∠PFD即可;(2)根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí);②當(dāng)點(diǎn)P在AB上方時(shí);③當(dāng)點(diǎn)P在CD下方時(shí),分別求出∠AEP、∠EPF、∠CFP之間的關(guān)系即可.【詳解】(1)當(dāng)點(diǎn)與點(diǎn)、在一直線(xiàn)上時(shí),作圖如下,∵AB∥CD,∠FHP=60°,,∴=∠FHP=60°,∴∠EFD=180°-∠GEP=180°-60°=120°,∴∠PFD=120°,故答案為:120°;(2)滿(mǎn)足關(guān)系式為∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.證明:根據(jù)點(diǎn)P是動(dòng)點(diǎn),分三種情況討論:①當(dāng)點(diǎn)P在AB與CD之間時(shí),過(guò)點(diǎn)P作PQ∥AB,如下圖,∵AB∥CD,∴PQ∥AB∥CD,∴∠AEP=∠EPQ,∠CFP=∠FPQ,∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,即∠EPF=∠AEP+∠CFP;②當(dāng)點(diǎn)P在AB上方時(shí),如下圖所示,∵∠AEP=∠EPF+∠EQP,∵AB∥CD,∴∠CFP=∠EQP,∴∠AEP=∠EPF+∠CFP;③當(dāng)點(diǎn)P在CD下方時(shí),∵AB∥CD,∴∠AEP=∠EQF,∴∠EQF=∠EPF+∠CFP,∴∠AEP=∠EPF+∠CFP,綜上所述,∠AEP、∠EPF、∠CFP之間滿(mǎn)足的關(guān)系式為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,故答案為:∠EPF=∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.【點(diǎn)睛】本題考查了平行線(xiàn)的性質(zhì),外角的性質(zhì),掌握平行線(xiàn)的性質(zhì)是解題的關(guān)鍵,注意分情況討論問(wèn)題.17.(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線(xiàn)的定義求得∠CAG=∠BAC=50°;再由平行線(xiàn)的性質(zhì)可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見(jiàn)解析;(2),證明見(jiàn)解析.【解析】【分析】(1)①根據(jù)角平分線(xiàn)的定義求得∠CAG=∠BAC=50°;再由平行線(xiàn)的性質(zhì)可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內(nèi)角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線(xiàn)的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線(xiàn)的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內(nèi)角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線(xiàn)的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線(xiàn)的性質(zhì)可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內(nèi)角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線(xiàn)的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線(xiàn)的性質(zhì)可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質(zhì)可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線(xiàn)ED交AG于點(diǎn)M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點(diǎn)睛】本題考查了角平分線(xiàn)的定義、平行線(xiàn)的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì),根據(jù)角平分線(xiàn)的定義、平行線(xiàn)的性質(zhì)、三角形的內(nèi)角和定理及三角形外角的性質(zhì)確定各角之間的關(guān)系是解決問(wèn)題的關(guān)鍵.18.(1)證明見(jiàn)解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見(jiàn)解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過(guò)點(diǎn)E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應(yīng)用】(2)分別過(guò)E點(diǎn),F(xiàn)點(diǎn),G點(diǎn),H

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論