人教版初一數(shù)學下冊名校課堂訓練:期末壓軸題測試(一)培優(yōu)試卷_第1頁
人教版初一數(shù)學下冊名校課堂訓練:期末壓軸題測試(一)培優(yōu)試卷_第2頁
人教版初一數(shù)學下冊名校課堂訓練:期末壓軸題測試(一)培優(yōu)試卷_第3頁
人教版初一數(shù)學下冊名校課堂訓練:期末壓軸題測試(一)培優(yōu)試卷_第4頁
人教版初一數(shù)學下冊名校課堂訓練:期末壓軸題測試(一)培優(yōu)試卷_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一、解答題1.如圖,在長方形ABCD中,AB=8cm,BC=6cm,點E是CD邊上的一點,且DE=2cm,動點P從A點出發(fā),以2cm/s的速度沿A→B→C→E運動,最終到達點E.設點P運動的時間為t秒.(1)請以A點為原點,AB所在直線為x軸,1cm為單位長度,建立一個平面直角坐標系,并用t表示出點P在不同線段上的坐標.(2)在(1)相同條件得到的結論下,是否存在P點使△APE的面積等于20cm2時,若存在,請求出P點坐標;若不存在,請說明理由.2.點A,C,E在直線l上,點B不在直線l上,把線段AB沿直線l向右平移得到線段CD.(1)如圖1,若點E在線段AC上,求證:B+D=BED;(2)若點E不在線段AC上,試猜想并證明B,D,BED之間的等量關系;(3)在(1)的條件下,如圖2所示,過點B作PB//ED,在直線BP,ED之間有點M,使得ABE=EBM,CDE=EDM,同時點F使得ABE=nEBF,CDE=nEDF,其中n≥1,設BMD=m,利用(1)中的結論求BFD的度數(shù)(用含m,n的代數(shù)式表示).3.已知,AB∥CD.點M在AB上,點N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出∠FEQ的度數(shù).4.已知:直線AB∥CD,直線MN分別交AB、CD于點E、F,作射線EG平分∠BEF交CD于G,過點F作FH⊥MN交EG于H.(1)當點H在線段EG上時,如圖1①當∠BEG=時,則∠HFG=.②猜想并證明:∠BEG與∠HFG之間的數(shù)量關系.(2)當點H在線段EG的延長線上時,請先在圖2中補全圖形,猜想并證明:∠BEG與∠HFG之間的數(shù)量關系.5.已知AB//CD.(1)如圖1,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D;(2)如圖,連接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直線交于點F.①如圖2,當點B在點A的左側時,若∠ABC=50°,∠ADC=60°,求∠BFD的度數(shù).②如圖3,當點B在點A的右側時,設∠ABC=α,∠ADC=β,請你求出∠BFD的度數(shù).(用含有α,β的式子表示)6.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點,點為上一點,連接,若的平分線交線段于點,連接,若,過點作交的延長線于點,且,求的度數(shù).7.數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀其中的奧秘.你知道怎樣迅速準確的計算出結果嗎?請你按下面的問題試一試:①,又,,∴能確定59319的立方根是個兩位數(shù).②∵59319的個位數(shù)是9,又,∴能確定59319的立方根的個位數(shù)是9.③如果劃去59319后面的三位319得到數(shù)59,而,則,可得,由此能確定59319的立方根的十位數(shù)是3因此59319的立方根是39.(1)現(xiàn)在換一個數(shù)195112,按這種方法求立方根,請完成下列填空.①它的立方根是_______位數(shù).②它的立方根的個位數(shù)是_______.③它的立方根的十位數(shù)是__________.④195112的立方根是________.(2)請直接填寫結果:①________.②________.8.閱讀材料:求值:,解答:設,將等式兩邊同時乘2得:,將得:,即.請你類比此方法計算:.其中n為正整數(shù)9.我們知道,正整數(shù)按照能否被2整除可以分成兩類:正奇數(shù)和正偶數(shù),小華受此啟發(fā),按照一個正整數(shù)被3除的余數(shù)把正整數(shù)分成了三類:如果一個正整數(shù)被3除余數(shù)為1,則這個正整數(shù)屬于A類,例如1,4,7等;如果一個正整數(shù)被3除余數(shù)為2,則這個正整數(shù)屬于B類,例如2,5,8等;如果一個正整數(shù)被3整除,則這個正整數(shù)屬于C類,例如3,6,9等.(1)2020屬于類(填A,B或C);(2)①從A類數(shù)中任取兩個數(shù),則它們的和屬于類(填A,B或C);②從A、B類數(shù)中任取一數(shù),則它們的和屬于類(填A,B或C);③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們都加起來,則最后的結果屬于類(填A,B或C);(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),把它們都加起來,若最后的結果屬于C類,則下列關于m,n的敘述中正確的是(填序號).①屬于C類;②屬于A類;③,屬于同一類.10.觀察下來等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式兩邊的數(shù)字分別是對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”.(1)根據(jù)以上各等式反映的規(guī)律,使下面等式成為“數(shù)字對稱等式”:52×_____=______×25;(2)設這類等式左邊的兩位數(shù)中,個位數(shù)字為a,十位數(shù)字為b,且2≤a+b≤9,則用含a,b的式子表示這類“數(shù)字對稱等式”的規(guī)律是_______.11.閱讀材料,解答問題:如果一個四位自然數(shù),十位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的差,個位數(shù)字是千位數(shù)字的2倍與百位數(shù)字的和,則我們稱這個四位數(shù)“依賴數(shù)”,例如,自然數(shù)2135,其中3=2×2﹣1,5=2×2+1,所以2135是“依賴數(shù)”.(1)請直接寫出最小的四位依賴數(shù);(2)若四位依賴數(shù)的后三位表示的數(shù)減去百位數(shù)字的3倍得到的結果除以7余3,這樣的數(shù)叫做“特色數(shù)”,求所有特色數(shù).(3)已知一個大于1的正整數(shù)m可以分解成m=pq+n4的形式(p≤q,n≤b,p,q,n均為正整數(shù)),在m的所有表示結果中,當nq﹣np取得最小時,稱“m=pq+n4”是m的“最小分解”,此時規(guī)定:F(m)=,例:20=1×4+24=2×2+24=1×19+14,因為1×19﹣1×1>2×4﹣2×1>2×2﹣2×2,所以F(20)==1,求所有“特色數(shù)”的F(m)的最大值.12.觀察下列兩個等式:,給出定義如下:我們稱使等式成立的一對有理數(shù)為“白馬有理數(shù)對”,記為,如:數(shù)對都是“白馬有理數(shù)對”.(1)數(shù)對中是“白馬有理數(shù)對”的是_________;(2)若是“白馬有理數(shù)對”,求的值;(3)若是“白馬有理數(shù)對”,則是“白馬有理數(shù)對”嗎?請說明理由.(4)請再寫出一對符合條件的“白馬有理數(shù)對”_________(注意:不能與題目中已有的“白馬有理數(shù)對”重復)13.如圖,在平面直角坐標系中,點的坐標分別為(1,0)、(-2,0),現(xiàn)同時將點分別向上平移2個單位,再向左平移1個單位,分別得到點的對應點,連接、、.(1)若在軸上存在點,連接,使S△ABM=S□ABDC,求出點的坐標;(2)若點在線段上運動,連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運動,請直接寫出的數(shù)量關系.14.問題情境:(1)如圖1,,,.求度數(shù).小穎同學的解題思路是:如圖2,過點作,請你接著完成解答.問題遷移:(2)如圖3,,點在射線上運動,當點在、兩點之間運動時,,.試判斷、、之間有何數(shù)量關系?(提示:過點作),請說明理由;(3)在(2)的條件下,如果點在、兩點外側運動時(點與點、、三點不重合),請你猜想、、之間的數(shù)量關系并證明.15.如圖,在平面直角坐標系中,同時將點A(﹣1,0)、B(3,0)向上平移2個單位長度再向右平移1個單位長度,分別得到A、B的對應點C、D.連接AC,BD(1)求點C、D的坐標,并描出A、B、C、D點,求四邊形ABDC面積;(2)在坐標軸上是否存在點P,連接PA、PC使S△PAC=S四邊形ABCD?若存在,求點P坐標;若不存在,請說明理由.16.中國傳統(tǒng)節(jié)日“端午節(jié)”期間,某商場開展了“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌的粽子進行了打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需520元.(1)打折前,每盒甲、乙品牌粽子分別為多少元?(2)在商場讓利促銷活動期間,某敬老院準備購買甲、乙兩種品牌粽子共40盒,總費用不超過2300元,問敬老院最多可購買多少盒乙品牌粽子?17.問題情境:在平面直角坐標系xOy中有不重合的兩點A(x1,y1)和點B(x2,y2),小明在學習中發(fā)現(xiàn),若x1=x2,則AB∥y軸,且線段AB的長度為|y1﹣y2|;若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1﹣x2|;(應用):(1)若點A(﹣1,1)、B(2,1),則AB∥x軸,AB的長度為.(2)若點C(1,0),且CD∥y軸,且CD=2,則點D的坐標為.(拓展):我們規(guī)定:平面直角坐標系中任意不重合的兩點M(x1,y1),N(x2,y2)之間的折線距離為d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:圖1中,點M(﹣1,1)與點N(1,﹣2)之間的折線距離為d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解決下列問題:(1)如圖1,已知E(2,0),若F(﹣1,﹣2),則d(E,F(xiàn));(2)如圖2,已知E(2,0),H(1,t),若d(E,H)=3,則t=.(3)如圖3,已知P(3,3),點Q在x軸上,且三角形OPQ的面積為3,則d(P,Q)=.18.如圖:在四邊形ABCD中,A、B、C、D四個點的坐標分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個單位,再向左平移2個單位,平移后的四邊形是A'B'C′D'(1)請畫出平移后的四邊形A'B'C′D'(不寫畫法),并寫出A'、B'、C′、D'四點的坐標.(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標.(3)求四邊形ABCD的面積.19.如圖,學校印刷廠與A,D兩地有公路、鐵路相連,從A地購進一批每噸8000元的白紙,制成每噸10000元的作業(yè)本運到D地批發(fā),已知公路運價1.5元/(t?km),鐵路運價1.2元/(t?km).這兩次運輸支出公路運費4200元,鐵路運費26280元.(1)白紙和作業(yè)本各多少噸?(2)這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多多少元?20.如圖,和的度數(shù)滿足方程組,且,.(1)用解方程的方法求和的度數(shù);(2)求的度數(shù).21.判斷下面方程組的解法是否正確,如果全部正確,判斷即可;如果有錯誤,請寫出正確的解題過程.解:①×2-②×3,得,解得,把代入方程①,得,解得.∴原方程組的解為22.一列快車長70米,慢車長80米,若兩車同向而行,快車從追上慢車到完全離開慢車,所用時間為20秒.若兩車相向而行,則兩車從相遇到離開時間為4秒,求兩車每秒鐘各行多少米?23.某企業(yè)用規(guī)格是170cm×40cm的標準板材作為原材料,按照圖①所示的裁法一或裁法二,裁剪出甲型與乙型兩種板材(單位:cm).(1)求圖中a、b的值;(2)若將40張標準板材按裁法一裁剪,5張標準板材按裁法二裁剪,裁剪后將得到的甲型與乙型板材做側面或底面,做成如圖②所示的豎式與橫式兩種無蓋的裝飾盒若干個(接縫處的長度忽略不計).①一共可裁剪出甲型板材張,乙型板材張;②恰好一共可以做出豎式和橫式兩種無蓋裝飾盒子多少個?24.閱讀下列材料,解答下面的問題:我們知道方程有無數(shù)個解,但在實際生活中我們往往只需求出其正整數(shù)解.例:由,得:,(x、y為正整數(shù))∴,則有.又為正整數(shù),則為正整數(shù).由2與3互質,可知:x為3的倍數(shù),從而x=3,代入∴2x+3y=12的正整數(shù)解為問題:(1)請你寫出方程的一組正整數(shù)解:.(2)若為自然數(shù),則滿足條件的x值為.(3)七年級某班為了獎勵學習進步的學生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費35元,問有幾種購買方案?25.如圖,在平面直角坐標系中,已知兩點,且a、b滿足點在射線AO上(不與原點重合).將線段AB平移到DC,點D與點A對應,點C與點B對應,連接BC,直線AD交y軸于點E.請回答下列問題:(1)求A、B兩點的坐標;(2)設三角形ABC面積為,若4<≤7,求m的取值范圍;(3)設,請給出,滿足的數(shù)量關系式,并說明理由.26.某體育拓展中心的門票每張10元,一次性使用考慮到人們的不同需求,也為了吸引更多的顧客,該拓展中心除保留原來的售票方法外,還推出了一種“購買個人年票”(個人年票從購買日起,可供持票者使用一年)的售票方法.年票分A、B兩類:A類年票每張120元,持票者可不限次進入中心,且無需再購買門票;B類年票每張60元,持票者進入中心時,需再購買門票,每次2元.(1)小麗計劃在一年中花費80元在該中心的門票上,如果只能選擇一種購買門票的方式,她怎樣購票比較合算?(2)小亮每年進入該中心的次數(shù)約20次,他采取哪種購票方式比較合算?(3)小明根據(jù)自己進入拓展中心的次數(shù),購買了A類年票,請問他一年中進入該中心不低于多少次?27.定義:如果一個兩位數(shù)a的十位數(shù)字為m,個位數(shù)字為n,且、、,那么這個兩位數(shù)叫做“互異數(shù)”.將一個“互異數(shù)”的十位數(shù)字與個位數(shù)字對調后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與11的商記為.例如:,對調個位數(shù)字與十位數(shù)字得到新兩位數(shù)41,新兩位數(shù)與原兩位數(shù)的和為,和與11的商為,所以.根據(jù)以上定義,解答下列問題:(1)填空:①下列兩位數(shù):20,21,22中,“互異數(shù)”為________;②計算:________;________;(m、n分別為一個兩位數(shù)的十位數(shù)字與個位數(shù)字)(2)如果一個“互異數(shù)”b的十位數(shù)字是x,個位數(shù)字是y,且;另一個“互異數(shù)”c的十位數(shù)字是,個位數(shù)字是,且,請求出“互異數(shù)”b和c;(3)如果一個“互異數(shù)”d的十位數(shù)字是x,個位數(shù)字是,另一個“互異數(shù)”e的十位數(shù)字是,個位數(shù)字是3,且滿足,請直接寫出滿足條件的所有x的值________;(4)如果一個“互異數(shù)”f的十位數(shù)字是,個位數(shù)字是x,且滿足的互異數(shù)有且僅有3個,則t的取值范圍________.28.若關于x的方程ax+b=0(a≠0)的解與關于y的方程cy+d=0(c≠0)的解滿足﹣1≤x﹣y≤1,則稱方程ax+b=0(a≠0)與方程cy+d=0(c≠0)是“友好方程”.例如:方程2x﹣1=0的解是x=0.5,方程y﹣1=0的解是y=1,因為﹣1≤x﹣y≤1,方程2x﹣1=0與方程y﹣1=0是“友好方程”.(1)請通過計算判斷方程2x﹣9=5x﹣2與方程5(y﹣1)﹣2(1﹣y)=﹣34﹣2y是不是“友好方程”.(2)若關于x的方程3x﹣3+4(x﹣1)=0與關于y的方程+y=2k+1是“友好方程”,請你求出k的最大值和最小值.29.已知關于x、y的二元一次方程(1)若方程組的解x、y滿足,求a的取值范圍;(2)求代數(shù)式的值.30.如圖,在平面直角坐標系中,,CD//x軸,CD=AB.(1)求點D的坐標:(2)四邊形OCDB的面積四邊形OCDB;(3)在y軸上是否存在點P,使△PAB=四邊形OCDB;若存在,求出點P的坐標,若不存在,請說明理由.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)建立直角坐標系見解析,當0<t≤4時,即當點P在線段AB上時,其坐標為:P(2t,0),當4<t≤7時,即當點P在線段BC上時,其坐標為:P(8,2t﹣8),當7<t≤10時,即當點P在線段CE上時,其坐標為:P(22﹣2t,6);(2)存在,當點P的坐標分別為:P(,0)或P(8,4)時,△APE的面積等于.【分析】(1)建立平面直角坐標系,根據(jù)點P的運動速度分別求出點P在線段AB,BC,CE上的坐標;(2)根據(jù)(1)中得到的點P的坐標以及,分別列出三個方程并解出此時t的值再進行討論.【詳解】(1)正確畫出直角坐標系如下:當0<t≤4時,點P在線段AB上,此時P點的橫坐標為,其縱坐標為0;∴此時P點的坐標為:P(2t,0);同理:當4<t≤7時,點P在線段BC上,此時P點的坐標為:P(8,2t﹣8);當7<t≤10時,點P在線段CE上,此時P點的坐標為:P(22﹣2t,6).(2)存在,①如圖1,當0<t≤4時,點P在線段AB上,,解得:t(s);∴P點的坐標為:P(,0).②如圖2,當4<t≤7時,點P在線段BC上,;∴;解得:t=6(s);∴點P的坐標為:P(8,4).③如圖3,當7<t≤10時,點P在線段CE上,;解得:t(s);∵7,∴t(應舍去),綜上所述:當P點的坐標為:P(,0)或P(8,4)時,△APE的面積等于.【點睛】本題考查了三角形的面積的計算公式,,在本題計算的過程中根據(jù)動點的坐標正確地求出三角形的底邊長度和高是解題的關鍵.2.(1)見解析;(2)當點E在CA的延長線上時,∠BED=∠D-∠B;當點E在AC的延長線上時,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如圖1中,過點E作ET∥AB.利用平行線的性質解決問題.(2)分兩種情形:如圖2-1中,當點E在CA的延長線上時,如圖2-2中,當點E在AC的延長線上時,構造平行線,利用平行線的性質求解即可.(3)利用(1)中結論,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解決問題即可.【詳解】解:(1)證明:如圖1中,過點E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如圖2-1中,當點E在CA的延長線上時,過點E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如圖2-2中,當點E在AC的延長線上時,過點E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如圖,設∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【點睛】本題屬于幾何變換綜合題,考查了平行線的性質,角平分線的定義等知識,解題的關鍵是學會條件常用輔助線,構造平行線解決問題,屬于中考??碱}型.3.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質可求解;過F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質可求解;(2)根據(jù)(1)的結論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質及角平分線的定義,作平行線的輔助線是解題的關鍵.4.(1)①18°;②2∠BEG+∠HFG=90°,證明見解析;(2)2∠BEG-∠HFG=90°證明見解析部【分析】(1)①證明2∠BEG+∠HFG=90°,可得結論.②利用平行線的性質證明即可.(2)如圖2中,結論:2∠BEG-∠HFG=90°.利用平行線的性質證明即可.【詳解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案為:18°.②結論:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如圖2中,結論:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【點睛】本題考查平行線的性質,角平分線的定義等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.5.(1)見解析;(2)55°;(3)【分析】(1)根據(jù)平行線的判定定理與性質定理解答即可;(2)①如圖2,過點作,當點在點的左側時,根據(jù),,根據(jù)平行線的性質及角平分線的定義即可求的度數(shù);②如圖3,過點作,當點在點的右側時,,,根據(jù)平行線的性質及角平分線的定義即可求出的度數(shù).【詳解】解:(1)如圖1,過點作,則有,,,,;(2)①如圖2,過點作,有.,...即,平分,平分,,,.答:的度數(shù)為;②如圖3,過點作,有.,,...即,平分,平分,,,.答:的度數(shù)為.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是熟練掌握平行線的判定與性質.6.(1)見解析;(2)【分析】(1)根據(jù)平行線的性質得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過點E作,延長DC至Q,過點M作,根據(jù)平行線的性質及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質及角平分線的定義可推出;設,根據(jù)角的和差可得出,結合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質,即可得出答案.【詳解】(1)證明:;(2)過點E作,延長DC至Q,過點M作,,,AF平分FH平分設,.【點睛】本題考查了平行線的判定及性質,角平分線的定義,能靈活根據(jù)平行線的性質和判定進行推理是解此題的關鍵.7.(1)①兩;②8;③5;④58;(2)①24;②56.【分析】(1)①根據(jù)例題進行推理得出答案;②根據(jù)例題進行推理得出答案;③根據(jù)例題進行推理得出答案;④根據(jù)②③得出答案;(2)①先判斷它的立方根是幾位數(shù),再判斷個位、十位上的數(shù)字,即可得到結論;②先判斷它的立方根是幾位數(shù),再判斷個位、十位上的數(shù)字,即可得到結論.【詳解】(1)①,,∴,∴能確定195112的立方根是一個兩位數(shù),故答案為:兩;②∵195112的個位數(shù)字是2,又∵,∴能確定195112的個位數(shù)字是8,故答案為:8;③如果劃去195112后面三位112得到數(shù)195,而,∴,可得,由此能確定195112的立方根的十位數(shù)是5,故答案為:5;④根據(jù)②③可得:195112的立方根是58,故答案為:58;(2)①13824的立方根是兩位數(shù),立方根的個位數(shù)是4,十位數(shù)是2,∴13824的立方根是24,故答案為:24;②175616的立方根是兩位數(shù),立方根的個位數(shù)是6,十位數(shù)是5,∴175616的立方根是56,故答案為:56.【點睛】此題考查立方根的性質,一個數(shù)的立方數(shù)的特點,正確理解題意仿照例題解題的能力,掌握一個數(shù)的立方數(shù)的特點是解題的關鍵.8.(1);(2).【解析】【分析】設,兩邊乘以2后得到關系式,與已知等式相減,變形即可求出所求式子的值;同理即可得到所求式子的值.【詳解】解:設,將等式兩邊同時乘2得:,將下式減去上式得:,即,則;設,兩邊同時乘3得:,得:,即,則.【點睛】本題考查了規(guī)律型:數(shù)字的變化類,有理數(shù)的混合運算,解題的關鍵是明確題意,運用題目中的解題方法,運用類比的數(shù)學思想解答問題.9.(1)A;(2)①B;②C;③B;(3)①③.【分析】(1)計算,結合計算結果即可進行判斷;(2)①從A類數(shù)中任取兩個數(shù)進行計算,即可求解;②從A、B兩類數(shù)中任取兩個數(shù)進行計算,即可求解;③根據(jù)題意,從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,再除以3,即可得到答案;(3)根據(jù)m,n的余數(shù)之和,舉例,觀察即可判斷.【詳解】解:(1)根據(jù)題意,∵,∴2020被3除余數(shù)為1,屬于A類;故答案為:A.(2)①從A類數(shù)中任取兩個數(shù),如:(1+4)÷3=1…2,(4+7)÷3=3…2,……∴兩個A類數(shù)的和被3除余數(shù)為2,則它們的和屬于B類;②從A、B類數(shù)中任取一數(shù),與①同理,如:(1+2)÷3=1,(1+5)÷3=2,(4+5)÷3=3,……∴從A、B類數(shù)中任取一數(shù),則它們的和屬于C類;③從A類數(shù)中任意取出8個數(shù),從B類數(shù)中任意取出9個數(shù),從C類數(shù)中任意取出10個數(shù),把它們的余數(shù)相加,則,∴,∴余數(shù)為2,屬于B類;故答案為:①B;②C;③B.(3)從A類數(shù)中任意取出m個數(shù),從B類數(shù)中任意取出n個數(shù),余數(shù)之和為:m×1+n×2=m+2n,∵最后的結果屬于C類,∴m+2n能被3整除,即m+2n屬于C類,①正確;②若m=1,n=1,則|mn|=0,不屬于B類,②錯誤;③觀察可發(fā)現(xiàn)若m+2n屬于C類,m,n必須是同一類,③正確;綜上,①③正確.故答案為:①③.【點睛】本題考查了新定義的應用和有理數(shù)的除法,解題的關鍵是熟練掌握新定義進行解答.10.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【分析】(1)觀察等式,發(fā)現(xiàn)規(guī)律,等式的左邊:兩位數(shù)所乘的數(shù)是這個兩位數(shù)的個位數(shù)字變?yōu)榘傥粩?shù)字,十位數(shù)字變?yōu)閭€位數(shù)字,兩個數(shù)字的和放在十位;等式的右邊:三位數(shù)與左邊的三位數(shù)字百位與個位數(shù)字交換,兩位數(shù)與左邊的兩位數(shù)十位與個位數(shù)字交換然后相乘,根據(jù)此規(guī)律進行填空即可;(2)按照(1)中對稱等式的方法寫出,然后利用多項式的乘法進行寫出即可.【詳解】解:(1)∵5+2=7,∴左邊的三位數(shù)是275,右邊的三位數(shù)是572,∴52×275=572×25,(2)左邊的兩位數(shù)是10b+a,三位數(shù)是100a+10(a+b)+b;右邊的兩位數(shù)是10a+b,三位數(shù)是100b+10(a+b)+a;“數(shù)字對稱等式”為:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案為275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【點睛】本題是對數(shù)字變化規(guī)律的考查,根據(jù)已知信息,理清利用左邊的兩位數(shù)的十位數(shù)字與個位數(shù)字變化得到其它的三個數(shù)字是解題的關鍵.11.(1)1022;(2)3066,2226;(3)【分析】(1)由于千位不能為0,最小只能取1;根據(jù)題目得出相應的公式:十位=2×千位﹣百位,個位=2×千位+百位,分別求出十位和個位,即可求出最小的四位依賴數(shù);(2)設千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),依據(jù)題意列出代數(shù)式然后表示為7的倍數(shù)加余數(shù)形式,然后求出x、y即可,從而求出所有特色數(shù);(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,故將(2)中特色數(shù)分解,找到最小分解,然后將n、p、q的值代入F(m)=,再比較大小即可.【詳解】解:(1)由題意可知:千位一定是1,百位取0,十位上的數(shù)字為:2×1-0=2,個位上的數(shù)字為:2×1+0=2則最小的四位依賴數(shù)是1022;(2)設千位數(shù)字是x,百位數(shù)字是y,根據(jù)“依賴數(shù)”定義,則有:十位數(shù)字是(2x﹣y),個位數(shù)字是(2x+y),根據(jù)題意得:100y+10(2x﹣y)+2x+y﹣3y=88y+22x=21(4y+x)+(4y+x),∵21(4y+x)+(4y+x)被7除余3,∴4y+x=3+7k,(k是非負整數(shù))∴此方程的一位整數(shù)解為:x=4,y=5(此時2x+y>10,故舍去);x=3,y=7(此時2x﹣y<0,故舍去);x=3,y=0;x=2,y=2;x=1,y=4(此時2x﹣y<0,故舍去);∴特色數(shù)是3066,2226.(3)根據(jù)最小分解的定義可知:n越小,p、q越接近,nq﹣np才越小,才是最小分解,此時F(m)=,由(2)可知:特色數(shù)有3066和2226兩個,對于3066=613×5+14=61×50+24∵1×613-1×5>2×61-2×50,∴3066取最小分解時:n=2,p=50,q=61∴F(3066)=對于2226=89×25+14=65×34+24,∵1×89-1×25>2×65-2×34,∴2226取最小分解時:n=2,p=34,q=65∴F(2226)=∵故所有“特色數(shù)”的F(m)的最大值為:.【點睛】此題考查的是新定義類問題,理解題意,并根據(jù)新定義解決問題是解決此題的關鍵.12.(1);(2)2;(3)不是;(4)(6,)【分析】(1)根據(jù)“白馬有理數(shù)對”的定義,把數(shù)對分別代入計算即可判斷;(2)根據(jù)“白馬有理數(shù)對”的定義,構建方程即可解決問題;(3)根據(jù)“白馬有理數(shù)對”的定義即可判斷;(4)根據(jù)“白馬有理數(shù)對”的定義即可解決問題.【詳解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1-3,∴(-2,1)不是“白馬有理數(shù)對”,∵5+=,5×-1=,∴5+=5×-1,∴是“白馬有理數(shù)對”,故答案為:;(2)若是“白馬有理數(shù)對”,則a+3=3a-1,解得:a=2,故答案為:2;(3)若是“白馬有理數(shù)對”,則m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1mn-1∴(-n,-m)不是“白馬有理數(shù)對”,故答案為:不是;(4)取m=6,則6+x=6x-1,∴x=,∴(6,)是“白馬有理數(shù)對”,故答案為:(6,).【點睛】本題考查了“白馬有理數(shù)對”的定義,有理數(shù)的加減運算,一次方程的列式求解,理解“白馬有理數(shù)對”的定義是解題的關鍵.13.(1)(0,4)或(0,-4);(2);(3)答案見解析【解析】(1)先根據(jù)S△ABM=S□ABDC,得出△ABM的高為4,再根據(jù)三角形面積公式得到M點的坐標;(2)先計算出S梯形OBDC=5,再討論:當點P運動到點B時,S△POC的最小值=2,當點P運動到點D時,S△POC的最大值=3,即可判斷S=S△PCD+S△POB的取值范圍的取值范圍;(3)分類討論:當點P在BD上,如圖1,作PE∥CD,根據(jù)平行線的性質得CD∥PE∥AB,則∠DCP=∠EPC,∠BOP=∠EPO,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO;當點P在線段BD的延長線上時,如圖2,同樣有∠DCP=∠EPC,∠BOP=∠EPO,由于∠EPO-∠EPC=∠BOP-∠DCP,于是∠BOP-∠DCP=∠CPO;同理可得當點P在線段DB的延長線上時,∠DCP-∠BOP=∠CPO.解:(1)由題意,得C(0,2)∴□ABDC的高為2若S△ABM=S□ABDC,則△ABM的高為4又∵點M是y軸上一點∴點M的坐標為(0,4)或(0,-4)(2)∵B(-2,0),O(0,0)∴OB=2由題意,得C(0,2),D(-3,2)∴OC=2,CD=3∴S梯形OBDC=點在線段上運動,當點運動到端點B時,△PCO的面積最小,為當點運動到端點D時,△PCO的面積最大,為∴S=S△PCD+S△POB=S梯形OBDC-S△PCO=5-S△PCO∴S的最大值為5-2=3,最小值為5-3=2故S的取值范圍是:(3)如圖:當點在線段上運動時,當點在射線上運動時,當點在射線上運動時,點睛:本題主要考查坐標與圖形的性質及三角形的面積.利用分類討論思想,并構造輔助線利用平行線的性質推理是解題的關鍵.14.(1)見解析;(2),理由見解析;(3)①當在延長線時(點不與點重合),;②當在之間時(點不與點,重合),.理由見解析【分析】(1)過P作PE∥AB,構造同旁內角,利用平行線性質,可得∠APC=113°;(2)過過作交于,,推出,根據(jù)平行線的性質得出,即可得出答案;(3)畫出圖形(分兩種情況:①點P在BA的延長線上,②當在之間時(點不與點,重合)),根據(jù)平行線的性質即可得出答案.【詳解】解:(1)過作,,,,,,,,;(2),理由如下:如圖3,過作交于,,,,,,,又;(3)①當在延長線時(點不與點重合),;理由:如圖4,過作交于,,,,,,,,又,;②當在之間時(點不與點,重合),.理由:如圖5,過作交于,,,,,,,,又.【點睛】本題考查了平行線的性質的應用,主要考查學生的推理能力,解決問題的關鍵是作輔助線構造內錯角以及同旁內角.15.(1)(0,2),(4,2),見解析,ABDC面積:8;(2)存在,P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【解析】【分析】(1)根據(jù)向右平移橫坐標加,向上平移縱坐標加寫出點C、D的坐標即可,再根據(jù)平行四邊形的面積公式列式計算即可得解;(2)分點P在x軸和y軸上兩種情況,依據(jù)S△PAC=S四邊形ABCD求解可得.【詳解】(1)由題意知點C坐標為(﹣1+1,0+2),即(0,2),點D的坐標為(3+1,0+2),即(4,2),如圖所示,S四邊形ABDC=2×4=8;(2)當P在x軸上時,∵S△PAC=S四邊形ABCD,∴,∵OC=2,∴AP=8,∴點P的坐標為(7,0)或(﹣9,0);當P在y軸上時,∵S△PAC=S四邊形ABCD,∴,∵OA=1,∴CP=16,∴點P的坐標為(0,18)或(0,﹣14);綜上,點P的坐標為(7,0)或(﹣9,0)或(0,18)或(0,﹣14).【點睛】本題考查了坐標與圖形性質,三角形的面積,坐標與圖形變化﹣平移,熟記各性質是解題的關鍵.16.(1)打折前,甲品牌粽子每盒70元,乙品牌粽子每盒80元;(2)最多可購買15盒乙品牌粽子.【分析】(1)設打折前甲品牌粽子每盒元,乙品牌粽子每盒元,根據(jù)“打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買5盒甲品牌粽子和4盒乙品牌粽子需要520元”,即可得出關于、的二元一次方程組,解之即可得出結論;(2)設敬老院可購買盒乙品牌粽子.即可得出關于的一元一次不等式,解之取其中的最大值整數(shù)值即可得出結論.【詳解】解:(1)設打折前,每盒甲品牌粽子元,每盒乙品牌粽子元,根據(jù)題意,得:,解得,答:打折前,甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)設敬老院可購買盒乙品牌粽子.打折后,甲品牌粽子每盒:(元,乙品牌粽子每盒:(元,根據(jù)題意,得:,解得.的最大整數(shù)解為.答:最多可購買15盒乙品牌粽子.【點睛】本題考查了二元一次方程組的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量之間的關系,正確列出一元一次不等式.17.【應用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)=5;(2)2或﹣2;(3)4或8.【分析】(應用)(1)根據(jù)若y1=y(tǒng)2,則AB∥x軸,且線段AB的長度為|x1?x2|,代入數(shù)據(jù)即可得出結論;(2)由CD∥y軸,可設點D的坐標為(1,m),根據(jù)CD=2,可得|0﹣m|=2,故可求出m,即可求解;(拓展)(1)根據(jù)兩點之間的折線距離公式,代入數(shù)據(jù)即可得出結論;(2)根據(jù)兩點之間的折線距離公式結合d(E,H)=3,即可得出關于t的含絕對值符號的一元一次方程,解之即可得出結論;(3)由點Q在x軸上,可設點Q的坐標為(x,0),根據(jù)三角形的面積公式結合三角形OPQ的面積為3即可求出x的值,再利用兩點之間的折線距離公式即可得出結論;【詳解】(應用):(1)AB的長度為|﹣1﹣2|=3.故答案為:3.(2)由CD∥y軸,可設點D的坐標為(1,m),∵CD=2,∴|0﹣m|=2,解得:m=±2,∴點D的坐標為(1,2)或(1,﹣2).故答案為:(1,2)或(1,﹣2).(拓展):(1)d(E,F(xiàn))=|2﹣(﹣1)|+|0﹣(﹣2)|=5.故答案為:=5.(2)∵E(2,0),H(1,t),d(E,H)=3,∴|2﹣1|+|0﹣t|=3,解得:t=±2.故答案為:2或﹣2.(3)由點Q在x軸上,可設點Q的坐標為(x,0),∵三角形OPQ的面積為3,∴|x|×3=3,解得:x=±2.當點Q的坐標為(2,0)時,d(P,Q)=|3﹣2|+|3﹣0|=4;當點Q的坐標為(﹣2,0)時,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.故答案為:4或8.【點睛】本題是三角形綜合題目,考查了新定義、兩點間的距離公式、三角形面積等知識,讀懂題意并熟練運用兩點間的距離及兩點之間的折線距離公式是解題的關鍵.18.(1)圖見解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫出圖形,再根據(jù)圖形寫出對應點的坐標進而得出答案;(2)利用平移規(guī)律進而得出對應點坐標的變化規(guī)律:向上平移1個單位,縱坐標加1;向左平移2個單位,橫坐標減2;(3)利用四邊形ABCD所在的最小矩形面積減去周圍三角形面積進而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內部有一點P的坐標為(a,b)寫點P的對應點P′的坐標為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點睛】此題主要考查了平移變換以及坐標系內四邊形面積求法,正確得出對應點位置是解題關鍵.19.(1)白紙有100噸,作業(yè)本有90噸;(2)69520元【分析】(1)設白紙有噸,作業(yè)本有噸,根據(jù)共支出公路運費4200元,鐵路運費26280元.列出二元一次方程組,解之即可;(2)由銷售款(白紙的購進款與運輸費的和),進行計算即可.【詳解】解:(1)設白紙有噸,作業(yè)本有噸,由題意,得,整理得:,解得.答:白紙有100噸,作業(yè)本有90噸;(2)(元).答:這批作業(yè)本的銷售款比白紙的購進款與運輸費的和多69520元.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是找準等量關系,正確列出二元一次方程組.20.(1),;(2)【分析】(1)把和當做未知數(shù),利用加減消元法解二元一次方程組即可;(2)先證明AB∥EF,則可以得到CD∥AB,∠C+∠CAB=180°,求出∠CAB的度數(shù)即可求解.【詳解】解:(1)用②+①得:,解得,把代入①解得;(2)∵∴AB∥EF,∵,∴CD∥AB,∴∠C+∠CAB=180°,∵∠CAB=∠EAC+∠BAE,AC⊥AE,∴∠CAE=90°,∴∠CAB=140°∴40°.【點睛】本題考查了平行線的判定和性質,解二元一次方程組,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.21.【分析】用加減消元法解二元一次方程組,在兩個方程作差時符號出錯了,正確為①②,得,再求解即可.【詳解】解:上述解法不正確.正確解題過程如下:①②,得,解得,把代入方程①,得,解得.原方程組的解為.【點睛】本題考查了二元一次方程組的解,解題的關鍵是熟練掌握加減消元法解二元一次方程組.22.快車每秒行米,慢車每秒行米.【分析】設快車每秒行米,慢車每秒行米,根據(jù)若兩車同向而行,快車從追上慢車到完全離開慢車,所用時間為20秒.若兩車相向而行,則兩車從相遇到離開時間為4秒,列出方程組,解方程組即可求得.【詳解】設快車每秒行米,慢車每秒行米,根據(jù)題意得,解得答:快車每秒行米,慢車每秒行米.【點睛】本題考查了二元一次方程組的應用,根據(jù)題意列出方程組是解題的關鍵.23.(1)60,40;(2)①甲:85;乙50;②27【分析】(1)由圖示列出關于a、b的二元一次方程組求解.(2)①根據(jù)已知和圖示計算出兩種裁法共產生甲型板材和乙型板材的張數(shù);②根據(jù)豎式與橫式禮品盒所需要的甲、乙兩種型號板材的張數(shù)列出關于m、n的二元一次方程,求解,即可得出結論.【詳解】解:(1)依題意,得:解得:a=60b=40答:a、b的值分別為60,40.(2)①一共可裁剪出甲型板材40×2+5=85(張)乙型板材40+5×2=50(張).故答案是:85,50;②設可做成m個豎式無蓋裝飾盒,n個橫式無蓋裝飾盒.依題意得:,解得:m=4,n=23所以m+n=27,故答案為27個【點睛】本題考查的知識點是二元一次方程組的應用,關鍵是根據(jù)已知先列出二元一次方程組求出a、b的值,根據(jù)圖示列出算式以及關于m、n的二元一次方程.24.(1)方程的正整數(shù)解是或.(只要寫出其中的一組即可);(2)滿足條件x的值有4個:x=3或x=4或x=5或x=8;(3)有兩種購買方案:即購買單價為3元的筆記本5本,單價為5元的鋼筆4支;或購買單價為3元的筆記本10本,單價為5元的鋼筆1支.【解析】(1)---------------------------.(2)C(3)解:設購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,由題意得:3x+5y=35此方程的正整數(shù)解為有兩種購買方案:方案一:購買單價為3元的筆記本5個,購買單價為5元的鋼筆4支.方案二:購買單價為3元的筆記本10個,購買單價為5元的鋼筆1支(1)只要使等式成立即可(2)x-2必須是6的約數(shù)(3)設購買單價為3元的筆記本x個,購買單價5元的鋼筆y個,根據(jù)題意列二元一次方程,去正整數(shù)解求值25.(1);(2);(3)當點C在x軸的正半軸上時,;當點C在點A和點O之間時,,理由見解析.【分析】(1)由非負性可得,解方程組可求解a,b的值,即可求解;(2)由平移的性質可得AC=m-(-3)=m+3,OB=2,由三角形的面積公式可求m的取值范圍;(3)由平移的性質可得AD∥BC.分兩種情況:當點C在x軸的正半軸上時;當點C在點A和點O之間時.由平行線的性質可求解.【詳解】解:(1)由題意可知解得所以(2)三角形的面積為由得4<≤7所以;(3)作OF//BC,當點C在x軸的正半軸上時,如圖1,當點C在點A和點O之間時,如圖2,.【點睛】本題是幾何變換綜合題,考查了非負性,二元一次方程組的解法,一元一次不等式組的解法,平移的性質等知識,靈活運用這些性質進行推理計算是本題的關鍵,要注意分類討論.26.(1)應該購買B類年票,理由見解析;(2)應該購買B類年票,理由見解析;(3)小明一年中進入拓展中心不低于30次【分析】(1)因為80元小于120元,故無法購買A類年票,繼而分別討論直接購票與購買B類年票,這兩種方式何者次數(shù)更多即可.(2)本題根據(jù)進入中心的次數(shù),分別計算小亮直接購票、購買A類年票、購買B類年票所消費的總金額,最后比較總花費大小即可.(3)小明選擇購買A類年票,說明A類年票更為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論