泰州市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(含答案)_第1頁
泰州市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(含答案)_第2頁
泰州市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(含答案)_第3頁
泰州市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(含答案)_第4頁
泰州市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(含答案)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

泰州市初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題(含答案)(2)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.如果下列各組數(shù)是三角形的三邊,那么不能組成直角三角形的一組數(shù)是()A. B. C. D.2.在平面直角坐標(biāo)系中,已知平行四邊形ABCD的點(diǎn)A(0,﹣2)、點(diǎn)B(3m,4m+1)(m≠﹣1),點(diǎn)C(6,2),則對(duì)角線BD的最小值是()A.3 B.2 C.5 D.63.如圖,P為等邊三角形ABC內(nèi)的一點(diǎn),且P到三個(gè)頂點(diǎn)A,B,C的距離分別為3,4,5,則△ABC的面積為()A. B. C. D.4.如果直角三角形的三條邊為3、4、a,則a的取值可以有()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)5.如圖所示,用四個(gè)全等的直角三角形和一個(gè)小正方形拼成一個(gè)大正方形已知大正方形的面積為49,小正方形的面積為4.用,表示直角三角形的兩直角邊(),請(qǐng)仔細(xì)觀察圖案.下列關(guān)系式中不正確的是()A. B.C. D.6.如圖,在△ABC中,∠C=90°,AD是△ABC的一條角平分線.若AC=6,AB=10,則點(diǎn)D到AB邊的距離為()A.2 B.2.5 C.3 D.47.在△ABC中,∠BCA=90°,AC=6,BC=8,D是AB的中點(diǎn),將△ACD沿直線CD折疊得到△ECD,連接BE,則線段BE的長等于()A.5 B. C. D.8.如圖,在中,,動(dòng)點(diǎn)從點(diǎn)出發(fā),沿射線以的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒,當(dāng)為等腰三角形時(shí),的值不可能為()A. B. C. D.9.如圖,長方體的長為15cm,寬為10cm,高為20cm,點(diǎn)B離點(diǎn)C5cm,一只螞蟻如果要沿著長方體的表面從點(diǎn)A爬到點(diǎn)B去吃一滴蜜糖,需要爬行的最短距離是()cm.A.25 B.20 C.24 D.1010.在中,是直線上一點(diǎn),已知,,,,則的長為()A.4或14 B.10或14 C.14 D.1011.如圖,在四邊形ABCD中,,與的平分線相交于BC邊上的M點(diǎn),則下列結(jié)論:①;②;③;④到AD的距離等于BC的;⑤為BC的中點(diǎn);其中正確的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)12.我國古代數(shù)學(xué)家趙爽的“勾股方圓圖”是由四個(gè)全等的直角三角形與中間的一個(gè)小正方形拼成的一個(gè)大正方形(如圖所示),如果大正方形的面積是25,小正方形的面積是1,直角三角形的兩直角邊分別是a和b,那么ab的值為()A.49 B.25 C.12 D.1013.如圖,在△ABC,∠C=90°,AD平分∠BAC交CB于點(diǎn)D,過點(diǎn)D作DE⊥AB,垂足恰好是邊AB的中點(diǎn)E,若AD=3cm,則BE的長為()A.cm B.4cm C.3cm D.6cm14.以線段、b、c的長為邊長能構(gòu)成直角三角形的是()A.=3,b=4,c=6 B.=1,b=,c=C.=5,b=6,c=8 D.=,b=2,c=15.已知,為正數(shù),且,如果以,的長為直角邊作一個(gè)直角三角形,那么以這個(gè)直角三角形的斜邊為邊長的正方形的面積為()A.5 B.25 C.7 D.1516.如圖,有一塊直角三角形紙片,兩直角邊,.現(xiàn)將直角邊沿直線折疊,使它落在斜邊上,且與重合,則等于()A. B. C. D.17.下列結(jié)論中,矩形具有而菱形不一定具有的性質(zhì)是()A.內(nèi)角和為360° B.對(duì)角線互相平分 C.對(duì)角線相等 D.對(duì)角線互相垂直18.如圖,在數(shù)軸上點(diǎn)所表示的數(shù)為,則的值為()A. B. C. D.19.已知△ABC的三邊分別是6,8,10,則△ABC的面積是()A.24 B.30 C.40 D.4820.如圖,點(diǎn)的坐標(biāo)是,若點(diǎn)在軸上,且是等腰三角形,則點(diǎn)的坐標(biāo)不可能是()A.(2,0) B.(4,0)C.(-,0) D.(3,0)21.下列長度的三條線段能組成直角三角形的是()A.9,7,12 B.2,3,4 C.1,2, D.5,11,1222.已知三角形的兩邊分別為3、4,要使該三角形為直角三角形,則第三邊的長為()A. B. C.5或 D.3或423.如圖,在等腰Rt△ABC中,∠C=90°,AC=7,∠BAC的角平分線AD交BC于點(diǎn)D,則點(diǎn)D到AB的距離是(??)A.3 B.4 C. D.24.如圖,在中,,,邊上的中線,請(qǐng)?jiān)囍卸ǖ男螤钍牵ǎ〢.直角三角形 B.等邊三角形 C.等腰三角形 D.以上都不對(duì)25.如圖,△ABC中,AB=AC,AD是∠BAC的平分線.已知AB=5,AD=3,則BC的長為()A.5 B.6 C.8 D.1026.下列條件中,不能判定為直角三角形的是()A. B.C. D.,,27.如圖,分別以直角三邊為邊向外作三個(gè)正方形,其面積分別用表示,若,,那么()A.9 B.5 C.53 D.4528.如圖,已知直線a∥b,且a與b之間的距離為4,點(diǎn)A到直線a的距離為2,點(diǎn)B到直線b的距離為3,AB.試在直線a上找一點(diǎn)M,在直線b上找一點(diǎn)N,滿足MN⊥a且AM+MN+NB的長度和最短,則此時(shí)AM+NB=()A.6

B.8 C.10 D.1229.如圖,在矩形紙片ABCD中,AD=9,AB=3,將其折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,那么折痕EF的長為()A.3 B. C. D.930.下列各組數(shù)據(jù),是三角形的三邊長能構(gòu)成直角三角形的是()A. B. C. D.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.B解析:B【分析】根據(jù)勾股定理的逆定理分別計(jì)算各個(gè)選項(xiàng),選出正確的答案.【詳解】A、,能組成直角三角形,故正確;B、,不能組成直角三角形,故錯(cuò)誤;C、,能組成直角三角形,故正確;D、,能組成直角三角形,故正確;故選:B.【點(diǎn)睛】本題考查了勾股定理的逆定理:已知三角形ABC的三邊滿足a2+b2=c2,則三角形ABC是直角三角形.2.D解析:D【分析】先根據(jù)B(3m,4m+1),可知B在直線y=x+1上,所以當(dāng)BD⊥直線y=x+1時(shí),BD最小,找一等量關(guān)系列關(guān)于m的方程,作輔助線:過B作BH⊥x軸于H,則BH=4m+1,利用三角形相似得BH2=EH?FH,列等式求m的值,得BD的長即可.【詳解】解:如圖,∵點(diǎn)B(3m,4m+1),∴令,∴y=x+1,∴B在直線y=x+1上,∴當(dāng)BD⊥直線y=x+1時(shí),BD最小,過B作BH⊥x軸于H,則BH=4m+1,∵BE在直線y=x+1上,且點(diǎn)E在x軸上,∴E(?,0),G(0,1)∵F是AC的中點(diǎn)∵A(0,?2),點(diǎn)C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH?FH,∴(4m+1)2=(3m+)(3?3m)解得:m1=?(舍),m2=,∴B(,),∴BD=2BF=2×=6,則對(duì)角線BD的最小值是6;故選:D.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),利用待定系數(shù)法求一次函數(shù)的解析式,三角形相似的判定,圓形與坐標(biāo)特點(diǎn),勾股定理等知識(shí)點(diǎn).本題利用點(diǎn)B的坐標(biāo)確定其所在的直線的解析式是關(guān)鍵.3.A解析:A【解析】分析:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長BP,作AF⊥BP于點(diǎn)F.AP=3,PE=4,根據(jù)勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),在直角△APF中利用三角函數(shù)求得AF和PF的長,則在直角△ABF中利用勾股定理求得AB的長,進(jìn)而求得三角形ABC的面積.詳解:∵△ABC為等邊三角形,∴BA=BC,可將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,連EP,且延長BP,作AF⊥BP于點(diǎn)F.如圖,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE為等邊三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE為直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.則△ABC的面積是?AB2=?(25+12)=9+.故選A.點(diǎn)睛:本題考查了等邊三角形的判定與性質(zhì)、勾股定理的逆定理以及旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后的兩個(gè)圖形全等,對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.4.C解析:C【解析】【分析】根據(jù)勾股定理求解即可,注意要確認(rèn)a是直角邊還是斜邊.【詳解】解:當(dāng)a是直角三角形的斜邊時(shí),;當(dāng)a為直角三角形的直角邊時(shí),.故選C.【點(diǎn)睛】本題考查的是勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.5.D解析:D【解析】【分析】利用勾股定理和正方形的面積公式,對(duì)公式進(jìn)行合適的變形即可判斷各個(gè)選項(xiàng)是否爭取.【詳解】A中,根據(jù)勾股定理等于大正方形邊長的平方,它就是正方形的面積,故正確;B中,根據(jù)小正方形的邊長是2它等于三角形較長的直角邊減較短的直角邊即可得到,正確;C中,根據(jù)四個(gè)直角三角形的面積和加上小正方形的面積即可得到,正確;D中,根據(jù)A可得,C可得,結(jié)合完全平方公式可以求得,錯(cuò)誤.故選D.【點(diǎn)睛】本題考查勾股定理.在A、B、C選項(xiàng)的等式中需理解等式的各個(gè)部分表示的幾何意義,對(duì)于D選項(xiàng)是由A、C選項(xiàng)聯(lián)立得出的.6.C解析:C【分析】作DE⊥AB于E,由勾股定理計(jì)算出可求BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用等等面積法列方程、解方程即可解答.【詳解】解:作DE⊥AB于E,如圖,在Rt△ABC中,BC==8,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=6(8﹣x),解得x=3,即點(diǎn)D到AB邊的距離為3.故答案為C.【點(diǎn)睛】本題考查了角平分線的性質(zhì)和勾股定理的相關(guān)知識(shí),理解角的平分線上的點(diǎn)到角的兩邊的距離相等是解答本題的關(guān)鍵..7.C解析:C【分析】根據(jù)勾股定理及直角三角形的中線、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,EG⊥CD于G,證明△DHE≌△EGD,利用勾股定理求出,即可得到BE.【詳解】∵∠BCA=90°,AC=6,BC=8,∴,∵D是AB的中點(diǎn),∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC,CE=AC=6,∴BD=DE,作DH⊥BE于H,EG⊥CD于G,∴∠DHE=∠EGD=90,∠EDH=∠BDE=(180-2∠EDC)=90-∠EDC,∴∠DEB=90-∠EDH=90-(90-∠EDC)=∠EDC,∵DE=DE,∴△DHE≌△EGD,∴DH=EG,EH=DG,設(shè)DG=x,則CG=5-x,∵=,∴,∴,∴,∴BE=2EH=,故選:C.【點(diǎn)睛】此題考查翻折的性質(zhì),勾股定理,等腰三角形的性質(zhì),將求BE轉(zhuǎn)換為求其一半的長度的想法是關(guān)鍵,由此作垂線,證明△DHE≌△EGD,由此求出BE的長度.8.C解析:C【分析】根據(jù)為等腰三角形,分三種情況進(jìn)行討論,分別求出BP的長度,從而求出t值即可.【詳解】在中,,,①如圖,當(dāng)時(shí),;②如圖,當(dāng)時(shí),∵,∴,;③如圖,當(dāng)時(shí),設(shè),則,∵在中,,∴,解得:,∴,綜上所述,當(dāng)為等腰三角形時(shí),或或.故選:C.【點(diǎn)睛】本題考查了勾股定理,等腰三角形的性質(zhì),注意分類討論.9.A解析:A【分析】分三種情況討論:把左側(cè)面展開到水平面上,連結(jié)AB;把右側(cè)面展開到正面上,連結(jié)AB,;把向上的面展開到正面上,連結(jié)AB;然后利用勾股定理分別計(jì)算各情況下的AB,再進(jìn)行大小比較.【詳解】把左側(cè)面展開到水平面上,連結(jié)AB,如圖1把右側(cè)面展開到正面上,連結(jié)AB,如圖2把向上的面展開到正面上,連結(jié)AB,如圖3∵∴∴需要爬行的最短距離為25cm故選:A.【點(diǎn)睛】本題考查了平面展開及其最短路徑問題:先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點(diǎn)之間的最短路徑.一般情況是兩點(diǎn)之間,線段最短.在平面圖形上構(gòu)造直角三角形解決問題.10.A解析:A【分析】根據(jù)AC=13,AD=12,CD=5,可判斷出△ADC是直角三角形,在Rt△ADB中求出BD,繼而可得出BC的長度.【詳解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于點(diǎn)D在直線BC上,分兩種情況討論:當(dāng)點(diǎn)D在線段BC上時(shí),如圖所示,在Rt△ADB中,,則;②當(dāng)點(diǎn)D在BC延長線上時(shí),如圖所示,在Rt△ADB中,,則.故答案為:A.【點(diǎn)睛】本題考查勾股定理和逆定理,需要分類討論,掌握勾股定理和逆定理的應(yīng)用為解題關(guān)鍵.11.C解析:C【分析】過作于,得出,,求出,根據(jù)三角形內(nèi)角和定理求出,即可判斷①;根據(jù)角平分線性質(zhì)求出,,即可判斷④和⑤;由勾股定理求出,,即可判斷③;根據(jù)證,推出,同理得出,即可判斷②.【詳解】解:過作于,與的平分線相交于邊上的點(diǎn),,,,,,,故①正確;平分,,,,同理,,故⑤正確;到的距離等于的一半,故④錯(cuò)誤;由勾股定理得:,,又,,,同理,,故③正確;在和中,,同理,,故②正確;故選:.【點(diǎn)睛】本題考查了角平分線性質(zhì),垂直定義,直角梯形,勾股定理,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生運(yùn)用定理進(jìn)行推理的能力.12.C解析:C【解析】試題解析:如圖,∵大正方形的面積是25,∴c2=25,∴a2+b2=c2=25,∵直角三角形的面積是(25-1)÷4=6,又∵直角三角形的面積是ab=6,∴ab=12.故選C.13.A解析:A【分析】先根據(jù)角平分線的性質(zhì)可證CD=DE,從而根據(jù)“HL”證明Rt△ACD≌Rt△AED,由DE為AB中線且DE⊥AB,可求AD=BD=3cm,然后在Rt△BDE中,根據(jù)直角三角形的性質(zhì)即可求出BE的長.【詳解】∵AD平分∠BAC且∠C=90°,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E為AB中點(diǎn),∴AC=AE=AB,所以,∠B=30°.∵DE為AB中線且DE⊥AB,∴AD=BD=3cm,∴DE=BD=,∴BE=cm.故選A.【點(diǎn)睛】本題考查了角平分線的性質(zhì),線段垂直平分線的性質(zhì),全等三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì),及勾股定理等知識(shí),熟練掌握全等三角形的判定與性質(zhì)是解答本題的關(guān)鍵.14.B解析:B【分析】根據(jù)勾股定理的逆定理對(duì)四個(gè)選項(xiàng)進(jìn)行逐一分析即可.【詳解】A、,C、,D、,故錯(cuò)誤;B、,能構(gòu)成直角三角形,本選項(xiàng)正確.故選B.【點(diǎn)睛】本題考查了勾股定理的知識(shí)點(diǎn),解題的關(guān)鍵是熟練的掌握勾股定理的定理與運(yùn)算.15.C解析:C【分析】本題可根據(jù)兩個(gè)非負(fù)數(shù)相加和為0,則這兩個(gè)非負(fù)數(shù)的值均為0解出x、y的值,然后運(yùn)用勾股定理求出斜邊的長.斜邊長的平方即為正方形的面積.【詳解】依題意得:,∴,斜邊長,所以正方形的面積.故選C.考點(diǎn):本題綜合考查了勾股定理與非負(fù)數(shù)的性質(zhì)點(diǎn)評(píng):解這類題的關(guān)鍵是利用直角三角形,用勾股定理來尋求未知系數(shù)的等量關(guān)系.16.B解析:B【分析】根據(jù)翻折的性質(zhì)可知:AC=AE=6,CD=DE,設(shè)CD=DE=x,在Rt△DEB中利用勾股定理解決.【詳解】解:在Rt△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB?AE=10?6=4,設(shè)CD=DE=x,在Rt△DEB中,∵,∴,∴x=3,∴CD=3.故答案為:B.【點(diǎn)睛】本題考查翻折的性質(zhì)、勾股定理,利用翻折不變性是解決問題的關(guān)鍵,學(xué)會(huì)轉(zhuǎn)化的思想去思考問題.17.C解析:C【分析】矩形與菱形相比,菱形的四條邊相等、對(duì)角線互相垂直;矩形四個(gè)角是直角,對(duì)角線相等,由此結(jié)合選項(xiàng)即可得出答案.【詳解】A、菱形、矩形的內(nèi)角和都為360°,故本選項(xiàng)錯(cuò)誤;B、對(duì)角互相平分,菱形、矩形都具有,故本選項(xiàng)錯(cuò)誤;C、對(duì)角線相等菱形不具有,而矩形具有,故本選項(xiàng)正確D、對(duì)角線互相垂直,菱形具有而矩形不具有,故本選項(xiàng)錯(cuò)誤,故選C.【點(diǎn)睛】本題考查了菱形的性質(zhì)及矩形的性質(zhì),熟練掌握矩形的性質(zhì)與菱形的性質(zhì)是解題的關(guān)鍵.18.A解析:A【分析】首先根據(jù)勾股定理得出圓弧的半徑,然后得出點(diǎn)A的坐標(biāo).【詳解】解:∴由圖可知:點(diǎn)A所表示的數(shù)為:故選:A【點(diǎn)睛】本題主要考查的就是數(shù)軸上點(diǎn)所表示的數(shù),屬于基礎(chǔ)題型.解決這個(gè)問題的關(guān)鍵就是求出斜邊的長度.在數(shù)軸上兩點(diǎn)之間的距離是指兩點(diǎn)所表示的數(shù)的差的絕對(duì)值.19.A解析:A【解析】已知△ABC的三邊分別為6,10,8,由62+82=102,即可判定△ABC是直角三角形,兩直角邊是6,8,所以△ABC的面積為×6×8=24,故選A.20.D解析:D【詳解】解:(1)當(dāng)點(diǎn)P在x軸正半軸上,①以O(shè)A為腰時(shí),∵A的坐標(biāo)是(2,2),∴∠AOP=45°,OA=,∴P的坐標(biāo)是(4,0)或(,0);②以O(shè)A為底邊時(shí),∵點(diǎn)A的坐標(biāo)是(2,2),∴當(dāng)點(diǎn)P的坐標(biāo)為:(2,0)時(shí),OP=AP;(2)當(dāng)點(diǎn)P在x軸負(fù)半軸上,③以O(shè)A為腰時(shí),∵A的坐標(biāo)是(2,2),∴OA=,∴OA=AP=∴P的坐標(biāo)是(-,0).故選D.21.C解析:C【分析】利用勾股定理的逆定理:如果三角形兩條邊的平方和等于第三邊的平方,那么這個(gè)三角形就是直角三角形.最長邊所對(duì)的角為直角.由此判定即可.【詳解】解:A、因?yàn)?2+72≠122,所以三條線段不能組成直角三角形;B、因?yàn)?2+32≠42,所以三條線段不能組成直角三角形;C、因?yàn)?2+2=22,所以三條線段能組成直角三角形;D、因?yàn)?2+112≠122,所以三條線段不能組成直角三角形.故選C.【點(diǎn)睛】此題考查勾股定理逆定理的運(yùn)用,注意數(shù)據(jù)的計(jì)算.22.C解析:C【分析】根據(jù)勾股定理和分類討論的方法可以求得第三邊的長,從而可以解答本題.【詳解】由題意可得,當(dāng)3和4為兩直線邊時(shí),第三邊為:=5,當(dāng)斜邊為4時(shí),則第三邊為:=,故選:C【點(diǎn)睛】本題考查勾股定理,解答本題的關(guān)鍵是明確題意,利用勾股定理和分類討論的數(shù)學(xué)思想解答.23.C解析:C【分析】過點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)角平分線的性質(zhì)定理,可得:DE=DC=x,則BE=-x,進(jìn)而可得到AE=AC=7,在Rt△BDE中,應(yīng)用勾股定理即可求解.【詳解】過點(diǎn)D作DE⊥AB于點(diǎn)E,則∠AED=90°,AE=AC=7,∵△ABC是等腰直角三角形,∴BC=AC=7,AB=,在Rt△AED和Rt△ACD中,AE=AC,DE=DC,∴Rt△AED≌Rt△ACD,∴AE=AC=7,設(shè)DE=DC=x,則BD=7-x,在Rt△BDE中,,即:,解得:,故選:C.【點(diǎn)睛】本題考查角平分線的性質(zhì)定理,全等三角形的判定與性質(zhì),勾股定理等,運(yùn)用方程思想是解題的關(guān)鍵.24.C解析:C【分析】利用勾股定理的逆定理可以推導(dǎo)出是直角三角形.再利用勾股定理求出AC,可得出AB=AC,即可判斷.【詳解】解:由已知可得CD=BD=5,即,是直角三角形,,故是等腰三角形.故選C【點(diǎn)睛】本題考查了勾股定理和它的逆定理,熟練掌握定理是解題關(guān)鍵.25.C解析:C【分析】根據(jù)等腰三角形的三線合一得出∠ADB=90°,再根據(jù)勾股定理得出BD的長,即可得出BC的長.【詳解】在△ABC中,AB=AC,AD是∠BAC的平分線,ADBC,BC=2BD.∠ADB=90°在Rt△ABD中,根據(jù)勾股定理得:BD===4BC=2BD=2×4=8.故選C.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)及勾股定理,熟練掌握性質(zhì)定理是解題的關(guān)鍵.26.D解析:D【分析】由勾股定理的逆定理,只要驗(yàn)證兩小邊的平方和等于最長邊的平方或最大角是否是即可.【詳解】解:、,是直角三角形,故能判定是直角三角形;、,,故能判定是直角三角形;、,,故能判定是直角三角形;、,不是直角三角形,故不能判定是直角三角形;故選:.【點(diǎn)睛】本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,可利用勾股定理的逆定理和直角三角形的定義判斷.27.A解析:A【分析】根據(jù)勾股定理與正方形的性質(zhì)解答.【詳解】解:在Rt△ABC中,AB2=BC2+AC2,∵S1=AB2,S2=BC2,S3=AC2,∴S1=S2+S3.∵S2=7,S3=2,∴S1=7+2=9.故選:A.【點(diǎn)睛】本題考查了勾股定理:在任何一個(gè)直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.28.B解析:B【解析】【分析】MN表示直線a與直線b之間的距離,是定值,只要滿足AM+NB的值最小即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論