2025年山東聊城市高三三模高考數(shù)學(xué)試卷(含答案詳解)_第1頁
2025年山東聊城市高三三模高考數(shù)學(xué)試卷(含答案詳解)_第2頁
2025年山東聊城市高三三模高考數(shù)學(xué)試卷(含答案詳解)_第3頁
2025年山東聊城市高三三模高考數(shù)學(xué)試卷(含答案詳解)_第4頁
2025年山東聊城市高三三模高考數(shù)學(xué)試卷(含答案詳解)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025年聊城市高考模擬試題

數(shù)學(xué)(三)

注意事項(xiàng):

1.本試卷滿分150分,考試用時(shí)120分鐘,答卷前,考生務(wù)必將自己的姓名、

準(zhǔn)考證號(hào)等填寫在答題卡的相應(yīng)位置上.

2.回答選擇題時(shí),選出每小題的答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答

案標(biāo)號(hào)涂黑.如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào).回答非選擇

題時(shí),將答案寫在答題卡上,寫在本試卷上無效.

3.考試結(jié)束后,只將答題卡交回.

一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)

中,只有一項(xiàng)是符合題目要求的.

1.集合A=>2-,B={^-2<x<3},則()

A.1}B.{.v|—2<x<—1}

C.{xlx<3}D.{x|-lWx<3}

2.“av?!笔恰癐n。<In/?”的()

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

3.已知數(shù)據(jù)x,9,7,9的中位數(shù)和平均數(shù)相等,那么X的值為()

A.5B.7C.5或9D.7或II

4.已知平面向量〃,b是兩個(gè)單位向量,若1-那的模為、行,則6在。上的投影向量是()

11-I一1r

A.—HR.—hC.—〃O.—b

4422

5.記3為公差不為0的等差數(shù)列{%}的前〃項(xiàng)和,若4+%=2,%,“一生成等比數(shù)列,

則$6=()

A.0B.6C.12D.18

6.已知M是直線/:61+),-8=0上一點(diǎn),過點(diǎn)河作圓0:.12+丫2=4的切線,切點(diǎn)分別為尸,

Q,則△OPQ面積的最大值為(

A.73B.2x/3

7.已知某圓臺(tái)的軸截面中有一個(gè)角為三,且下底是上底的2倍,若該圓臺(tái)的外接球的表面

積為16幾,則該圓臺(tái)的體積為()

B.5信D.7后

8.已知/(丫)是定義域?yàn)镽的可導(dǎo)函數(shù),設(shè)其導(dǎo)函數(shù)為g(x).若/(x+l)-2x為偶函數(shù),旦

g(x)=g(4—x),則2g(j)=(

A.60C.20

二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項(xiàng)中,

有多項(xiàng)符合題目要求.全部選對(duì)的得6分,部分選對(duì)的得部分分,有選錯(cuò)的得0

分.

9.己知sin(a-6)=---,sinacos〃=-,則

A.cosasin/7=-—

C.3tana=2tan/7D.sin2min2〃=—

10.已知曲線^(0,-75),口0.石),P為曲線C上的動(dòng)點(diǎn),則()

A.若〃在第一象限,則產(chǎn)工(1,9十3小)

\PF21

B.若P在第二象限,則在軸上存在兩點(diǎn)A,8,使I尸41+1產(chǎn)閉為定值

4

C.若尸在第三象限,過點(diǎn)尸向直線y=±2x作垂線,垂是分別為4B,貝力以川尸以=1

D.直線21-),+20=0是曲線。的一條切線

11.對(duì)于數(shù)列{4},設(shè)區(qū)間(l,qj內(nèi)偶數(shù)的個(gè)數(shù)為“,則稱數(shù)列{"}為{%}的“,數(shù)列”,則

()

A.若數(shù)列{%}是數(shù)列付+1}的“〃數(shù)列,,,則j=13

B.若數(shù)列{%}是數(shù)列{2〃+3}的“”數(shù)列",則{%}是常數(shù)列

C.若數(shù)列{%}是數(shù)列{2"-、2}的“〃數(shù)列”,則匕}是等比數(shù)列

D.若數(shù)列仁}是數(shù)列{2”“+2}的“〃數(shù)列,,,則數(shù)列{(〃+1)%}的前項(xiàng)的和為〃.2用

試卷第2頁,共4頁

三、填空題:本題共3小題,每小題5分,共15分.

12.己知l—i是關(guān)于x的方程f+2px+9=0(p,4wR)的一個(gè)根,則〃+于的模為一.

13.函數(shù)〃力=卜+3|+2,+2|+尸的最小值為一.

14.己知£(-1,0),6(10)是橢圓C的左、右焦點(diǎn),橢圓C與拋物線),=4%在第一象限的

交點(diǎn)為戶,連接區(qū)與y軸交于點(diǎn)Q,若入。是NPFf的第平分練則橢圓。的離心率為

四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算

步驟.

15.記VABC的內(nèi)角A8,C的對(duì)邊分別為a,b,c,已知點(diǎn)inB+ManBcosA=2Z?sinC.

⑴求4;

(2)若。=3,且4c邊上的高為士且,求VA8C的周長(zhǎng).

7

16.如圖,在三棱柱ABC-ABG中,AB工BC,AB=BC,乙4陰=/。陰=券.

⑴求證:四邊形ACGA為矩形:

⑵若AB=AAi=2,求平面ABB.A.與平面ABC夾角的余弦值.

17.已知橢圓。:/+《=1(4>人>0)的短軸長(zhǎng)為2,離心率為當(dāng).

(1)求。的方程;

(2)若4.4分別是C的左、右頂點(diǎn),不與x軸垂直的動(dòng)直線/與C交于P.。兩點(diǎn)(不同于

A,&),且直線AP的斜率等于直線AQ的斜率的2倍,求證:直線/經(jīng)過定點(diǎn).

18.已知函數(shù)/(力="ilru+-(ZZZGR).

X

⑴若/("之o恒成立,求刑的取值范圍;

⑵當(dāng)〃=71時(shí),(i)求的最小值;(ii)證明:

cosx+2

19.一種微生物可以經(jīng)過自身分裂不斷生存下來,對(duì)于每個(gè)微生物,每次分裂的結(jié)果為:有

I.B

【分析】利用指數(shù)函數(shù)的單調(diào)性來解指數(shù)不等式,再利用交集運(yùn)算即可.

【詳解】由A=>2={X|X<-1),

貝!JAc8={x|—2Vx<3}={x|—2<xW—1},

故選:B.

2.B

【分析】根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),結(jié)合充分條件、必要條件的判定方法,即可求解.

【詳解】由lna<ln”,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),可得〃>。>0,所以必要性成立;

若〃<。<0時(shí),,此時(shí)ln〃<lnZ?不成立,所以充分不成立,

所以"〃"是"In"1M”的必要不充分條件.

故選:B.

3.D

【分析】根據(jù)平均數(shù)的計(jì)算及中位數(shù)的定義,分類討論,列出方程即可求解.

【詳解】平均數(shù)為入+7〃+9')2:一v225,

44

將這組數(shù)據(jù)排序,若x,?,9,9,則中位數(shù)為7+*9=8,

x+25

所以匚盧=8?A-7,符合題意;

將這組數(shù)據(jù)排序,若7,盯9,9,則中位數(shù)為等,

所以土產(chǎn)=8?x7,符合題意;

若7,9,9,x,則中位數(shù)為9,

+25

所以x三二=9?x11,符合題意;

綜上所述,x的值為7或11,

故選:D.

4.C

【分析】根據(jù)給定條件,利用數(shù)最積的運(yùn)算律求出7人再求出投影向量.

【詳解】依題意,修-2方|=6,則7-47B+4片=3,而|a|=|B|=l,解得。?b=g,

答案第1頁,共14頁

—?—?

ab

所以日在〃上的投影向量是而—a

2

故選:C

5.C

【分析】由等差數(shù)列的性質(zhì)可得的,再由等比中項(xiàng)的性質(zhì)可得4卬,結(jié)合等差數(shù)列的求和

公式代入計(jì)算,即可得到結(jié)果.

【詳解】設(shè)等差數(shù)列的公差為。(3工0),

由q+%=2可得2%=2,即%=1,

又〃3,4,2成等比數(shù)列,所以即(1一2"『=lx(l+4d),

化簡(jiǎn)可得4/-84=0,解得4=2或d=O(舍),

則。3=4+4=1,所以4=-3,

則$6=6x(—3)+號(hào)AxSx2=12.

故選:C

6.A

【分析】應(yīng)用點(diǎn)到直線距離得出d=4,|OM|最小時(shí),利用面積公式結(jié)合角的范圍即得.

O

【詳解】:圓心O到直線/:&+),一8=0的距離4=/=4,所以|QM|N4,

設(shè)NMOQ=8,cos〃=犒=就所以5>0之;,7t>2^>y,所以sin20W手,

則△OPQ面積5a8Q=;|0P|x|0Q|xsin26wgx2x2x¥=G

故選:A.

7.C

【分析】首先根據(jù)己知條件求出圓臺(tái)的高,然后根據(jù)外接球的表面積求出上底和下底半徑,

然后根據(jù)圓臺(tái)體積公式求出其體積.

【詳解】設(shè)圓臺(tái)的上底半徑為「,則下底半徑R=2r.

軸截面為等腰梯形,兩底邊長(zhǎng)分別為2,?和4>腰與下底的夾角為

則圓臺(tái)的高,即梯形的高為力=;(由『2中3微=小廠.

答案第2頁,共14頁

因?yàn)橥饨忧虻谋砻骅诪?6兀,所以球半徑為悟=2.

設(shè)球心到上底圓心距離為。,則到下底圓心距離為

根據(jù)球心到上下底面圓周的距離均為2,得方程:

r2+a2=4廠

..、2,解得r=

4r2+(fl-/z)=4

所以圓臺(tái)體枳為:

V=g/+Rr+r2)=gm而,(a1+)=2^.

故選:C.

8.B

【分析】根據(jù)函數(shù)的奇偶性結(jié)合求導(dǎo)數(shù),得出函數(shù)周期,應(yīng)用周期計(jì)算求解函數(shù)值即可.

【詳解】因?yàn)?1+1)-2為偶函數(shù),所以/(x+l)_2x=/(r+l)+2x,

所以,(x+i)—2=—r(—x+i)+2,所以r(x+i)+r(—)+i)=4,

所以g(x+l)+g(-x+l)=4,且g(r)=g(4—x),

所以g(H+g(T+2)=4,g(-x+4)+g(x-2)=4f所以g(x—2)=g(2—x),

所以g(”=g(T)=g(4f),所以8(X)的周期為4,

因?yàn)間(x+l)+身(_1+1)=4,令x=0,g(l)+g(l)=4,可得g(l)=2,

令j=l,g⑵+g(O)=4,

所以g⑴+g(2)+g⑶+g(4)=g⑴+g(2)+g(—l)+g(0)=8

20

所以Zg(i)=g(l)+8(2)+月(3)+…+g(20)=5x8=40.

/=!

故選:B.

9.BC

【分析】根據(jù)兩角和差公式計(jì)算求解判斷A,B,結(jié)合同角三角函數(shù)關(guān)系判斷C,應(yīng)用二倍

角正弦公式計(jì)算判斷D.

【詳解】A選項(xiàng),已知sin(a-/?)=sinacos/?-cosasinW=-"-,sin<7cos/?=—,

63

則cosasin尸=^+-=-,A錯(cuò)誤;

答案第3頁,共14頁

B選項(xiàng),sin(<7+^)=sincrcos/?+cosasin/?=—+—=—,B正確:

326

1

3-

tana_sinacos/j-2

C選項(xiàng),1二牙,所以3tana=2tan〃,C正確:

tan/?cos?sin/>

2-

D選項(xiàng),sin2asin2/?=2sin6tcoscrx2cospsiny?=4sincycosyy-cosasin/7

=4xiIxli=±?,D錯(cuò)誤;

故選:BC.

10.BCD

【分析】求出IPR1,1I的表達(dá)式,進(jìn)而求出嘿的范圍判斷A;利用橢圓的定義判斷B;

I尸卜[I

利用點(diǎn)到直線距離判斷C:聯(lián)立方程組,借助判別式計(jì)算判斷D.

【詳解】對(duì)于A,設(shè)點(diǎn)戶(.%,%),玉)>。,%>2,?_片=1,|0£|=JX+(為+括/

______________@『2

=gy;+2舟。+4=岑%+2,同理|P尸21=乎%-2,則檀卜古-----

25■%-2

=^°+j?+-f=~~~-,而石穌-4>26-4,因此;e(L9+4⑹,故A錯(cuò)誤;

V5y0-4V5y0-4I絲I

對(duì)于B,當(dāng)尸在第二象限時(shí),曲線。:工+/=1是橢圓£+/=]在第二象限的部分,

44

該橢圓的焦點(diǎn)為A(0,-6),4(0,6),長(zhǎng)軸長(zhǎng)為4,由橢圓定義得1必1+口8|=4,故B正確;

對(duì)于C,設(shè)P(x1,y),K<-1,,<0,工;一/~二1,

4

則|尸4|?|尸8|=氣更?巴糾=宜二或=±,故C正確;

757555

2x-y+2拒=0

對(duì)于D,當(dāng)P在第一象限時(shí),由消去V得2/+2五-1=0,

2-+x2=l

△=(2V2)2-4x2xl=0,因此直線2x-y+2夜=0與橢圓?+/=1相切于點(diǎn)(-與,拉),

即直線2x-y+2忘=0是曲線C的一條切線,故D正確.

答案第4頁,共14頁

故選:BCD.

11.ACD

【分析】根據(jù)數(shù)列新定義,結(jié)合常數(shù)列,等差數(shù)列,等比數(shù)列及錯(cuò)位相減法即可分別判斷各

個(gè)選項(xiàng).

【詳解】對(duì)于A,由題意得,在區(qū)間(1.28)內(nèi)偶數(shù)有13個(gè),故J=13,故A正確;

對(duì)于B,設(shè)q=2/?+3,在區(qū)間(1,2〃+3)內(nèi)最大的偶數(shù)為2〃+2,

2/74-9

所以共有三尸=〃+1個(gè)偶數(shù),則配=〃+1,不為常數(shù)列,故B錯(cuò)誤;

對(duì)于C,%=2用+2,在區(qū)間(12川+2)內(nèi)最大的偶數(shù)為2向,

所以共有1■=2”個(gè)偶數(shù),則c“=2",為等比數(shù)列,故C正確;

對(duì)于D,由C得,{(〃+1)%}={(〃+1>2”},設(shè)前”項(xiàng)和為S.,

則S”=2?2'3?22L+〃叱、(〃+1)2”,

2S?=2?223?23L+〃?2"(〃+1)2””,

兩式相減得,1=-4-(22+23+L+2")+(〃+l)2w+,

4(1-2"'')

=-4------------+(n+li?2,,+,故D正確;

1-2v

故選:ACD.

12.后

【分析】由題知(1-爐+2〃(1)+,/=0,即(2〃+q)-(2p+2)i=0,再根據(jù)復(fù)數(shù)相等求解

即可.

【詳解】知1-i是關(guān)于x的方程V+2px+夕=0(p,夕eR)的一個(gè)根,

答案第5頁,共14頁

所以(l_i『+2p(|_i)+q=0,即(2〃+g)―(2p+2)i=0,

2〃+q=0

所以解得〃-2.

〃+5的模為,(-1『+模=區(qū).

故答案為:75.

13.10-31n3

【分析】根據(jù)4>-2,工<-3和-3忘入忘-2三種情況,分別對(duì)函數(shù)解析式進(jìn)行化簡(jiǎn),求導(dǎo),

討論單調(diào)性,計(jì)算出最小值

【詳解】/(x)=|x+3|+2|x+2|+e-X

當(dāng)?shù)叮家?時(shí),/(x)=-x-3-2(x+2)+e-x=-3x-7+e-\

故"X)在(-00,-3)上單調(diào)遞減;

當(dāng)-3〈工〈-2時(shí),/(x)=x4-3-2(x+2)+e-A=-x-l+e-\

r(x)=-y

/(x)在[-3,-2]上單調(diào)遞減;

當(dāng)x>-2時(shí),f(x)=x+3+2(x+2)+eTx=3x+7+ex.

小)=33,

令r(x)>0,解得x>-hi3,令r(x)vO,解得-2<x<-ln3,

故/W在(-2,Tn3)上單調(diào)遞減,在(-瓜3,鈣)上單調(diào)遞增.

又〃力=卜+3|+2,+2|+97為連續(xù)函數(shù),

因此函數(shù)的最小值為/(-ln3)=7-31n3+eM3=10-31n3.

故答案為:10—31n3.

14.V2-I

【分析】利用角平分線定理,轉(zhuǎn)化線段之比,再利用已知線段以及拋物線焦半徑公式可求出

答案第6頁,共14頁

點(diǎn)p(l,2),從而可得方程求解4=應(yīng)+1,最后可求得離心率.

利用角平分線定理:

因?yàn)槭?。是/P鳥片的角平分線,所以有瑪=髓,

設(shè)P(醇〃),根據(jù)拋物線尸=4%的定義可得IP同=1,

由圖可知|PQ|與|Q用之比等于點(diǎn)P橫坐標(biāo)與|。娟之比,

則有等=會(huì)解得切=1,根據(jù)〃2=4,〃,交點(diǎn)戶在第一象限,

所以〃=2,即把點(diǎn)尸(1,2)代入橢圓方程可得:

」+:=1=//+4/,

a-b~

2

又因?yàn)?一〃2=c=1=/=/+1,

所以聯(lián)立」:面兩式可得:/+4/+4=力』+/=/一46一4=0,

解得/=4+ViK7道=2+2夜,

2

所以片=/+1=3+2&=(0+1)[〃=&+1,

即離心率。=

V2+1

故答案為:J5-1

15.⑴5

(2)5+77

【分析】。)根據(jù)題意,利用正弦定理和三角恒等變換的公式,化簡(jiǎn)得到包*=2sinC,

求得網(wǎng)84,即可求得8的大小;

答案第7頁,共14頁

(2)根據(jù)題意,利用面積相等法,求得。=翁,再由余弦定理,列出關(guān)于〃的方程,求得

b=幣,進(jìn)而求得V4BC的周長(zhǎng).

【詳解】(1)解:因?yàn)閏/sin8+〃tan8cosA=2Z?sinC,

由正弦定理,可得sinAsinB+sinB-S'ncosA=2sinBsinC,

cos4

又因?yàn)锽e(O.n),可得sinK>0,所以,sinA+=2sinC,

cos3

sinAcosB+cosAsinBsin(A+8)sinC一一

即Hn-------------------=---------=-----=2sinC,

cosBcosBcosB

因?yàn)镃e(0,7i),可得sinC>0,所以cosB=L

2

又因?yàn)?w(0"),所以8=

J

(2)解:由AC邊上的高為巫,可得s.8c='岳西,

7AAHL27

乂由〃=3且B=可得VA3C的面積為SABC=—acsinh=-cx—=^^-c,

3&ABC2224

所以遞c=_L〃.詼,解得4b2=7/,即。=若,

427J7

在VABC中,由余弦定理得〃=4十°:一2a℃osB,

可得y=9+(萬)2-3x/r,整理得從+2質(zhì)>—21=0,

解得力=J7或力=—3j7(舍去),此時(shí)c=2,

所以V48C的周長(zhǎng)為3+/+2=5+方.

16.(1)證明見解析

⑵4

【分析】(1)要證明四邊形ACGA為矩形,需證明其中一組鄰邊垂直,可通過向量運(yùn)算或

兒何方法利用已知角度和邊長(zhǎng)關(guān)系來證明;

(2)首先建立空間直角坐標(biāo)系,利用平面的法向量來求解.

【詳解】(1)根據(jù)題意,設(shè)A6=4C=a,A4]=c,BA=a.BC=b,AA;=c

=明.(BC-BA)=AA.BC-麗?f=BB.BC-西出人.

;

因?yàn)锽B{BC=|cosZ.B{BC=becos

答案第8頁,共14頁

BB.BA=忸4]|網(wǎng)cosZB,BA=accosy=-^?c

所以福京=幽灰-咽面=(),所以福J_A?.

又三棱柱AAC-ABC中,四邊形ACCA為平行四邊形,

所以四邊形ACGA為矩形.

(2)取4c的中點(diǎn)。,連接08,(用.作與交于點(diǎn)O.

由(1)知,四邊形ACC0為矩形,所以AC_LCG.

因?yàn)镃CJ/B6,所以AC_L84.

因?yàn)椤魅藶榈妊苯侨切?,。是中點(diǎn),所以O(shè)8JLAC.

又OBcBB、=B,所以AC_L平面06%.

因?yàn)橛肈u平面。84,所以AC_L瑪。.

又OOcAC=O,所以BQ,平面ABC.

在AABq中,由余弦定理得:AB:=A82+8B:-2M網(wǎng)44°322-x*2xg=

所以Ag=2jL

在RSAO4中,由勾股定理可得Og=jABj-OA)=《12-2=M.

082+8用2_(聞_2+4-10V2

在AO網(wǎng)中,由余弦定理/cos/Og

208.播B-2xV2x2-

所以NO34=135°,從而/6出。=45°.

由此可得BD=BQ=y/2.

以O(shè)為原點(diǎn),分別以。叫。。所在直線為x,5'軸,過O作垂直丁平面A6C的直線為z軸,建

立空間直角坐標(biāo)系,如圖所示.

答案第9頁,共14頁

設(shè)平面48C的法向量為所,則而二(0,0,1)為平面A8C的一個(gè)法向量.

因?yàn)榫W(wǎng)點(diǎn),0,0),A(0,-五0),(272,0,72)

所以羽=(夜,拒,0),^=(72,0,72).

設(shè)平面A84A的法向量為萬=(x,yz),則

AB-n=0&x+五y=0

,所以令z=1,

網(wǎng)切=0X/2X+72Z=0

則平面的一個(gè)法向量為萬=(TJ1).

所以cos5㈤=尚向=&=曰-

所以平面與平面A8C夾角的余弦值為立.

3

2

17.⑴三+/=];

4

(2)證明見解析.

【分析】(1)利用橢圓的參數(shù)意義,即可聯(lián)立求解橢圓方程;

(2)利用直線與橢圓聯(lián)立方程組和韋達(dá)定理公式,再借助已知的斜率關(guān)系,可轉(zhuǎn)化根與系

數(shù)的關(guān)系上來,最后可得加=;4,從而可證直線過定點(diǎn).

【詳解】(I)由題意得:2)=2=〃=1=a'-c'=1,

£=立=/=3。2,所以解得/=412=3,

a24

2

即橢圓方程C:土+),2=1:

4'

(2)

答案第10頁,共14頁

y

設(shè)直線/方程為歹=履+,〃,與橢圓工+)3=1聯(lián)立,消y得:

4

(4公+1+gh?次+4m2-4=0,

其中△=16(4女2+1-〃「)>0=4r+1>m2,

設(shè)尸(內(nèi),y),。伍,%),則x+%=清彳,中2=

4K+14K一+1:‘

由已知得:氣=鼻=*=汽=叱必3=戶不

玉+2,v,-2玉+2x2-2X1+z2(/-2)

再化簡(jiǎn)得:(2A2+1卜]々+(26〃+2)(內(nèi)+9)+2/〃2+4=0,

代入得:(2公+1)4〃:-4+(26+2)一吁〃+2//+4=0,

\,4r+1'74A:2+1

整理得:(2k—3,〃)(2人一切)=0,

因?yàn)橹本€/不經(jīng)過點(diǎn)4(-20),所以2人〃??0,

HP2k-3m=0=>m=—k,

3

所以直線/的方程為廣質(zhì)+京=《x+£],

因此直線/經(jīng)過定點(diǎn)卜豹).

18.(l)[0,e];

(2)1;證明見解析.

【分析】(1)利用分類討論,再求導(dǎo)研究單調(diào)性,即可求出最小值/(同由=〃?-〃?111"欄(),

從而可求解加的取值范圍;

(2)(i)利用常規(guī)求導(dǎo)來判斷函數(shù)的單調(diào)性,即可求得最小值;

(ii)利用第(i)問的結(jié)論/.WNl,從而把要證明的不等式轉(zhuǎn)化為再作差構(gòu)

coSur+2

造函數(shù)求導(dǎo)來證明即可.

答案第11頁,共14頁

【詳解】(1)因?yàn)楹瘮?shù)〃*="?巾+入〃?£1<)的定義域?yàn)?0,+8),

當(dāng)〃?=0時(shí),/(工)=,>0恒成立,

X

_111.

當(dāng)機(jī)<0時(shí),fe"'=/Hlne?+-r=-|+e-<0,所以此時(shí)/("=〃?1必+!>()不恒成立,

\?QmX

當(dāng)〃?>0時(shí),求導(dǎo)得r(x)=〃J--!=,

XXX

當(dāng)xe?)時(shí),外#=史?<0,所以/(力=陽山+:在入40,\)上單調(diào)遞減;

當(dāng)xw(',+8)時(shí),f(x)=tnX~X>0,所以/(x)=〃nnj+g在xe上單調(diào)遞增;

所以/(x)m,n=m+/zHn—=-mInm,

即不等式J(x)20恒成立,等價(jià)于〃z—〃?lnni>0<=>/?/(1-Inm)>0<=>1-In//z>0<=>0</?i<e,

綜上,,〃的取值范圍為[0、e].

(2)(i)當(dāng)〃?=1時(shí),/(x)=lnr+—,JllJ/f(x)=-—-y=

XXXX

當(dāng)x?0,l)時(shí),r(x)=*<0,所以/(x)=hr+,在無w(0,l)上單調(diào)遞減;

?XX

當(dāng)xe(l,+8)時(shí),/'(x)=上?>0,所以/(x)=lnx+」在xw(l,+8)上單調(diào)遞增;

.VX

所以HAL=i,

(ii)由/(x)Zl,則要證明才■(入”‘喂,只需要證明工>因],

COSJV+2cosx+2

構(gòu)造g(x)=x-3^,則

85+2

)

,()I3cos.r(cosx+2)+3sin2x】6cos+3_cos'x-2cosx+1_(COSA-1)'

>0,

(cosx+2)2cosx+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論