2026屆云南省江城縣第一中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁
2026屆云南省江城縣第一中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁
2026屆云南省江城縣第一中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁
2026屆云南省江城縣第一中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁
2026屆云南省江城縣第一中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆云南省江城縣第一中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù),,則下列不等式恒成立的是()A. B.C. D.2.在中,角A,B,C的對(duì)邊分別為a,b,c,若,且,則為()A.等腰三角形 B.直角三角形C.銳角三角形 D.鈍角三角形3.在空間直角坐標(biāo)系中,若,,則點(diǎn)B的坐標(biāo)為()A.(3,1,﹣2) B.(-3,1,2)C.(-3,1,-2) D.(3,-1,2)4.若是函數(shù)的極值點(diǎn),則函數(shù)()A.有最小值,無最大值 B.有最大值,無最小值C.有最小值,最大值 D.無最大值,無最小值5.已知橢圓C:的左右焦點(diǎn)為F1,F2離心率為,過F2的直線l交C與A,B兩點(diǎn),若△AF1B的周長(zhǎng)為,則C的方程為A. B.C. D.6.?dāng)?shù)列中前項(xiàng)和滿足,若是遞增數(shù)列,則的取值范圍為()A. B.C. D.7.若數(shù)列為等比數(shù)列,且,,則()A.8 B.16C.32 D.648.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為()A. B.C. D.9.已知,為正實(shí)數(shù),且,則的最小值為()A. B.C. D.110.已知雙曲線的右焦點(diǎn)為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點(diǎn),若(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為().A. B.C. D.11.已知點(diǎn)是橢圓的左右焦點(diǎn),橢圓上存在不同兩點(diǎn)使得,則橢圓的離心率的取值范圍是()A. B.C. D.12.“”是“直線與圓相切”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.為增強(qiáng)廣大師生生態(tài)文明意識(shí),大力推進(jìn)國家森林城市建設(shè)創(chuàng)建進(jìn)程,某班26名同學(xué)在一段直線公路一側(cè)植樹,每人植一棵(各自挖坑種植),相鄰兩棵樹相距均為10米,在同學(xué)們挖坑期間,運(yùn)到的樹苗集中放置在了某一樹坑旁邊,然后每位同學(xué)挖好自己的樹坑后,均從各自樹坑出發(fā)去領(lǐng)取樹苗.記26位同學(xué)領(lǐng)取樹苗往返所走的路程總和為,則的最小值為______米14.2021年7月24日,在東京奧運(yùn)會(huì)女子10米氣步槍決賽中,中國選手楊倩以251.8環(huán)的總成績(jī)奪得金牌,為中國代表團(tuán)摘得本屆奧運(yùn)會(huì)首金.已知楊倩其中5次射擊命中的環(huán)數(shù)如下:10.8,10.6,10.6,10.7,9.8,則這組數(shù)據(jù)的方差為______15.已知圓錐的高為,體積為,則以該圓錐的母線為半徑的球的表面積為______________.16.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:,,為圓上的動(dòng)點(diǎn),若線段的垂直平分線交于點(diǎn).(1)求動(dòng)點(diǎn)的軌跡的方程;(2)已知為上一點(diǎn),過作斜率互為相反數(shù)且不為0的兩條直線,分別交曲線于,,求的取值范圍.18.(12分)自我國爆發(fā)新冠肺炎疫情以來,各地醫(yī)療單位都加緊了醫(yī)療用品的生產(chǎn).某醫(yī)療器械廠統(tǒng)計(jì)了口罩生產(chǎn)車間每名工人的生產(chǎn)速度,并將所得數(shù)據(jù)分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數(shù)列,第五組與第二組的頻率相等(1)估計(jì)口罩生產(chǎn)車間工人生產(chǎn)速度的中位數(shù)(結(jié)果寫成分?jǐn)?shù)的形式);(2)為了解該車間工人生產(chǎn)速度是否與他們的工作經(jīng)驗(yàn)有關(guān),現(xiàn)從車間所有工人中隨機(jī)抽樣調(diào)查了5名工人的生產(chǎn)速度以及他們的工齡(參加工作的年限),數(shù)據(jù)如下表:工齡x(單位:年)4681012生產(chǎn)速度y(單位:件/小時(shí))4257626267根據(jù)上述數(shù)據(jù)求每名工人的生產(chǎn)速度y關(guān)于他的工齡x的回歸方程,并據(jù)此估計(jì)該車間某位有16年工齡的工人的生產(chǎn)速度附:回歸方程中斜率和截距的最小二乘估計(jì)公式為:,19.(12分)已知拋物線的焦點(diǎn)F,C上一點(diǎn)到焦點(diǎn)的距離為5(1)求C方程;(2)過F作直線l,交C于A,B兩點(diǎn),若線段AB中點(diǎn)的縱坐標(biāo)為-1,求直線l的方程20.(12分)如圖,扇形AOB的半徑為2,圓心角,點(diǎn)C為弧AB上一點(diǎn),平面AOB且,點(diǎn)且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小21.(12分)已知雙曲線及直線(1)若與有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍(2)若與交于,兩點(diǎn),且線段中點(diǎn)的橫坐標(biāo)為,求線段的長(zhǎng)22.(10分)已知圓與直線相切(1)求圓O的標(biāo)準(zhǔn)方程;(2)若線段AB的端點(diǎn)A在圓O上運(yùn)動(dòng),端點(diǎn)B的坐標(biāo)是,求線段AB的中點(diǎn)M的軌跡方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個(gè)選項(xiàng)得到答案.【詳解】當(dāng)時(shí),不等式不成立,錯(cuò)誤;,故錯(cuò)誤正確;當(dāng)時(shí),不等式不成立,錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學(xué)生對(duì)于不等式知識(shí)的綜合應(yīng)用.2、B【解析】由余弦定理可得,再利用可得答案.【詳解】因?yàn)?,所以,由余弦定理,因?yàn)?,所以,又,∴,故為直角三角?故選:B.3、C【解析】利用點(diǎn)的坐標(biāo)表示向量坐標(biāo),即可求解.【詳解】設(shè),,,所以,,,解得:,,,即.故選:C4、A【解析】對(duì)求導(dǎo),根據(jù)極值點(diǎn)求參數(shù)a,再由導(dǎo)數(shù)研究其單調(diào)性并判斷其最值情況.【詳解】由題設(shè),且,∴,可得.∴且,當(dāng)時(shí),遞減;當(dāng)時(shí),遞增;∴有極小值,無極大值.綜上,有最小值,無最大值.故選:A5、A【解析】若△AF1B的周長(zhǎng)為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點(diǎn):橢圓方程及性質(zhì)6、B【解析】由已知求得,再根據(jù)當(dāng)時(shí),,,可求得范圍.【詳解】解:因?yàn)?,則,兩式相減得,因?yàn)槭沁f增數(shù)列,所以當(dāng)時(shí),,解得,又,,所以,解得,綜上得,故選:B.7、B【解析】設(shè)等比數(shù)列的公比為,根據(jù)等比數(shù)列的通項(xiàng)公式得到,即可求出,再根據(jù)計(jì)算可得;【詳解】解:設(shè)等比數(shù)列公比為,因?yàn)?、,所以,所以;故選:B8、C【解析】根據(jù)點(diǎn)關(guān)于原點(diǎn)對(duì)稱的性質(zhì)即可知答案.【詳解】由點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則對(duì)稱點(diǎn)坐標(biāo)為該點(diǎn)對(duì)應(yīng)坐標(biāo)的相反數(shù),所以.故選:C9、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故的最小值為1,故選:D.10、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由,可知為的三等分點(diǎn),用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由到漸近線的距離為,所以,又,所以,因?yàn)椋?,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.11、C【解析】先設(shè)點(diǎn),利用向量關(guān)系得到兩點(diǎn)坐標(biāo)之間的關(guān)系,再結(jié)合點(diǎn)在橢圓上,代入方程,消去即得,根據(jù)題意,構(gòu)建的齊次式,解不等式即得結(jié)果.【詳解】設(shè),由得,,,即,由在橢圓上,故,即,消去得,,根據(jù)橢圓上點(diǎn)滿足,又兩點(diǎn)不同,可知,整理得,故,故.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:圓錐曲線中離心率的計(jì)算,關(guān)鍵是根據(jù)題中條件,結(jié)合曲線性質(zhì),找到一組等量關(guān)系(齊次式),進(jìn)而求解離心率或范圍.12、A【解析】根據(jù)題意,結(jié)合直線與圓的位置關(guān)系求出,即可求解.【詳解】根據(jù)題意,由直線與圓相切,知圓心到直線的距離,解得或,因此“”是“直線與圓相切”的充分不必要條件.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)對(duì)稱性易知:當(dāng)樹苗放在第13或14個(gè)坑,26位同學(xué)領(lǐng)取樹苗往返所走的路程總和最小,再應(yīng)用等差數(shù)列前n項(xiàng)和的求法求26位同學(xué)領(lǐng)取樹苗往返所走的路程總和.【詳解】將26個(gè)同學(xué)對(duì)應(yīng)的26個(gè)坑分左右各13個(gè)坑,∴根據(jù)對(duì)稱性:樹苗放在左邊13個(gè)坑,與放在對(duì)稱右邊的13個(gè)坑,26個(gè)同學(xué)所走的總路程對(duì)應(yīng)相等,∴當(dāng)樹苗放在第13個(gè)坑,26位同學(xué)領(lǐng)取樹苗往返所走的路程總和最小,此時(shí),左邊13位同學(xué)所走的路程分別為,右邊13位同學(xué)所走的路程分別為,∴最小值為米.故答案為:.14、128【解析】先求均值,再由方差公式計(jì)算【詳解】由已知,所以,故答案為:15、【解析】利用圓錐體積公式可求得圓錐底面半徑,利用勾股定理可得母線長(zhǎng);根據(jù)球的表面積公式可求得結(jié)果.【詳解】設(shè)圓錐的底面半徑為,母線長(zhǎng)為,圓錐體積,,,以為半徑的球的表面積.故答案為:.16、##【解析】根據(jù)題設(shè)及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設(shè),,整理得:,所以,而,故.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)動(dòng)點(diǎn)的軌跡的方程為;(2)的取值范圍.【解析】(1)由條件線段的垂直平分線交于點(diǎn)可得,由此可得,根據(jù)橢圓的定義可得點(diǎn)的軌跡為橢圓,結(jié)合橢圓的標(biāo)準(zhǔn)方程求動(dòng)點(diǎn)的軌跡的方程;(2)由(1)可求點(diǎn)坐標(biāo),設(shè)直線的方程為,,聯(lián)立方程組化簡(jiǎn)可得,,由直線,的斜率互為相反數(shù)可得的值,再由弦長(zhǎng)公式求的長(zhǎng),再求其范圍.【小問1詳解】由題知故.即即在以為焦點(diǎn)且長(zhǎng)軸為4的橢圓上則動(dòng)點(diǎn)的軌跡的方程為:;【小問2詳解】故即.設(shè):,聯(lián)立(*),,∴,,又則:即若,則過,不符合題意故,∴,故18、(1)(2)80件/小時(shí)【解析】(1)先利用等差數(shù)列的通項(xiàng)公式和頻率分布直方圖各矩形的面積之和為1求出各組頻率,再利用頻率分布直方圖求中位數(shù);(2)先求出、,利用最小二乘法求出回歸直線方程,再進(jìn)行預(yù)測(cè)其生產(chǎn)速度.【小問1詳解】解:設(shè)前4組的頻率分別為,,,,公差為,由頻率分布直方圖,得,即,解得,則,,所以中位數(shù)為.【小問2詳解】解:由題意,得,,由所給公式,得,,所以回歸直線方程為,則當(dāng)時(shí),,即估計(jì)該車間某位有16年工齡的工人的生產(chǎn)速度為80件/小時(shí).19、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫出拋物線方程.(2)由題意設(shè)直線l為,聯(lián)立拋物線方程,應(yīng)用韋達(dá)定理可得,由中點(diǎn)公式有,進(jìn)而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準(zhǔn)線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點(diǎn)的縱坐標(biāo)為-1,∴,即,得,∴直線l的方程為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點(diǎn)坐標(biāo)值,應(yīng)用韋達(dá)定理、中點(diǎn)公式求直線斜率,并寫出直線方程.20、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點(diǎn),連接MN,利用余弦定理可求得,,的長(zhǎng)度,進(jìn)而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(2)建立恰當(dāng)空間直角坐標(biāo)系,求出兩個(gè)平面的法向量,然后利用向量法求解二面角的余弦值,從而即可得答案【小問1詳解】證明:連接,設(shè)與相交于點(diǎn),連接MN,平面,在平面內(nèi),平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面內(nèi),,又,平面,又平面,平面平面;【小問2詳解】解:由(1)可知直線,,兩兩互相垂直,所以以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,所以,,設(shè)平面的一個(gè)法向量為,則,可?。辉O(shè)平面的一個(gè)法向量為,則,可取,,平面與平面所成二面角的正弦值為21、(1)且;(2)【解析】(1)聯(lián)立直線與雙曲線方程,利用方程組與兩個(gè)交點(diǎn),求出k的范圍(2)設(shè)交點(diǎn)A(x1,y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論