版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省黃岡市麻城實驗高中2025年高二上數(shù)學(xué)期末質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線上點的橫坐標為4,則到拋物線焦點的距離等于()A.12 B.10C.8 D.62.已知橢圓的離心率為,左、右焦點分別為、,過作軸的平行線交橢圓于、兩點,為坐標原點,雙曲線的虛軸長為,且以、為頂點,以直線、為漸近線,則橢圓的短軸長為()A. B.C. D.3.設(shè),為雙曲線的上,下兩個焦點,過的直線l交該雙曲線的下支于A,B兩點,且滿足,,則雙曲線的離心率為()A. B.C. D.4.圓錐曲線具有豐富的光學(xué)性質(zhì),從橢圓的一個焦點發(fā)出的光線,經(jīng)過橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.直線l:與橢圓C:相切于點P,橢圓C的焦點為,,由光學(xué)性質(zhì)知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.5.已知各項均為正數(shù)的等比數(shù)列{},=5,=10,則=A. B.7C.6 D.6.在平面區(qū)域內(nèi)隨機投入一點P,則點P的坐標滿足不等式的概率是()A. B.C. D.7.已知點P是雙曲線上的動點,過原點O的直線l與雙曲線分別相交于M、N兩點,則的最小值為()A.4 B.3C.2 D.18.執(zhí)行如圖所示的程序框圖,若輸出的的值為,則判斷框中應(yīng)填入()A.? B.?C.? D.?9.若,則的值為()A.或 B.或C.1 D.-110.已知函數(shù)(且,)的一個極值點為2,則的最小值為()A. B.C. D.711.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.12.設(shè)滿足則的最大值為A. B.2C.4 D.16二、填空題:本題共4小題,每小題5分,共20分。13.橢圓C:的左、右焦點分別為,,點A在橢圓上,,直線交橢圓于點B,,則橢圓的離心率為______14.已知向量,,且,則實數(shù)______.15.已知正方形的邊長為分別是邊的中點,沿將四邊形折起,使二面角的大小為,則兩點間的距離為__________16.已知A,B為x,y正半軸上的動點,且,O為坐標原點,現(xiàn)以為邊長在第一象限做正方形,則的最大值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)(1)求的值;(2)求的極大值18.(12分)已知函數(shù)在其定義域內(nèi)有兩個不同的極值點(1)求a的取值范圍;(2)設(shè)的兩個極值點分別為,證明:19.(12分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值20.(12分)已知:對任意,都有;:存在,使得(1)若“且”為真,求實數(shù)的取值范圍;(2)若“或”為真,“且”為假,求實數(shù)的取值范圍21.(12分)已知橢圓的中心在原點,焦點為,,且長軸長為4.(1)求橢圓的方程;(2)直線與橢圓相交于A,兩點,求弦長.22.(10分)已知函數(shù)(1)求在點處的切線方程(2)求直線與曲線圍成的封閉圖形的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)焦半徑公式即可求出【詳解】因為,所以,所以故選:C2、C【解析】不妨取點在第一象限,根據(jù)橢圓與雙曲線的幾何性質(zhì),以及它們之間的聯(lián)系,可得點的坐標,再將其代入橢圓的方程中,解之即可【詳解】解:由題意知,在橢圓中,有,在雙曲線中,有,,即,雙曲線的漸近線方程為,不妨取點在第一象限,則的坐標為,即,將其代入橢圓的方程中,有,,解得,橢圓的短軸長為故選:3、A【解析】設(shè),表示出,由勾股定理列式計算得,然后在,再由勾股定理列式,計算離心率.【詳解】由題意得,,且,如圖所示,設(shè),由雙曲線的定義可得,,因為,所以,得,所以,在中,,即.故選:A【點睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)4、A【解析】先求得點坐標,然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A5、A【解析】由等比數(shù)列的性質(zhì)知,a1a2a3,a4a5a6,a7a8a9成等比數(shù)列,所以a4a5a6=故答案為考點:等比數(shù)列的性質(zhì)、指數(shù)冪的運算、根式與指數(shù)式的互化等知識,轉(zhuǎn)化與化歸的數(shù)學(xué)思想6、A【解析】根據(jù)題意作出圖形,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.7、C【解析】根據(jù)雙曲線的對稱性可得為的中點,即可得到,再根據(jù)雙曲線的性質(zhì)計算可得;【詳解】解:根據(jù)雙曲線的對稱性可知為的中點,所以,又在上,所以,當且僅當在雙曲線的頂點時取等號,所以故選:C8、C【解析】本題為計算前項和,模擬程序,實際計算求和即可得到的值.【詳解】由題意可知:輸出的的值為數(shù)列的前項和.易知,則,令,解得.即前7項的和.為故判斷框中應(yīng)填入“?”.故選:C.9、B【解析】求出函數(shù)的導(dǎo)數(shù),由方程求解即可.【詳解】,,解得或,故選:B10、B【解析】求出函數(shù)的導(dǎo)數(shù),由給定極值點可得a與b的關(guān)系,再借助“1”的妙用求解即得.【詳解】對求導(dǎo)得:,因函數(shù)的一個極值點為2,則,此時,,,因,即,因此,在2左右兩側(cè)鄰近的區(qū)域值一正一負,2是函數(shù)的一個極值點,則有,又,,于是得,當且僅當,即時取“=”,所以的最小值為.故選:B11、C【解析】根據(jù)平均變化率的定義算出答案即可.【詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C12、C【解析】可行域如圖,則直線過點A(0,1)取最大值2,則的最大值為4,選C.點睛:線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大或最小值會在可行域的端點或邊界上取得.二、填空題:本題共4小題,每小題5分,共20分。13、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設(shè)出邊長,找到邊長與之間等量關(guān)系,然后把等量關(guān)系帶入到勾股定理表達的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設(shè),則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)14、【解析】利用向量平行的條件直接解出.【詳解】因為向量,,且,所以,解得.故答案為:.15、.【解析】取BE的中點G,然后證明是二面角的平面角,進而證明,最后通過勾股定理求得答案.【詳解】如圖,取BE的中點G,連接AG,CG,由題意,則是二面角的平面角,則,又,則是正三角形,于是.根據(jù)可得:平面ABE,而平面ABE,所以,而,則平面BCFE,又平面BCFE,于是,,又,所以.故答案為:.16、32【解析】建立平面直角坐標系,設(shè)出角度和邊長,表達出點坐標,進而表達出,利用三角函數(shù)換元,求出最大值.【詳解】如圖,過點D作DE⊥x軸于點E,過點C作CF⊥y軸于點F,設(shè),(),則由三角形全等可知,設(shè),,則,則,,則,令,,則,當時,取得最大值,最大值為32故答案為:32三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)-3(2)2【解析】(1)利用導(dǎo)數(shù)公式和法則求解;(2)令,利用極大值的定義求解.【小問1詳解】解:因為函數(shù),所以,所以;【小問2詳解】令,得,當或時,,當時,,所以當時,取得極大值.18、(1);(2)證明見解析.【解析】(1)對函數(shù)求導(dǎo),把問題轉(zhuǎn)化為導(dǎo)函數(shù)值為0的方程有兩個正根,再構(gòu)造函數(shù)求解作答.(2)將所證不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用導(dǎo)數(shù)探討其單調(diào)性作答.【小問1詳解】函數(shù)的定義域為,求導(dǎo)得:,依題意,函數(shù)在上有兩個不同極值點,于是得有兩個不等的正根,令,,則,當時,,當時,,于是得在上單調(diào)遞增,在上單調(diào)遞減,,因,恒成立,即當時,的值從遞減到0(不能取0),又,有兩個不等的正根等價于直線與函數(shù)的圖象有兩個不同的公共點,如圖,因此有,所以a取值范圍是.【小問2詳解】由(1)知分別是方程的兩個不等的正根,,即,作差得,則有,原不等式,令,則,于是得,設(shè),則,因此,在單調(diào)遞增,則有,即成立,所以.【點睛】關(guān)鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.19、(1)證明見解析;(2).【解析】(1):連結(jié)交交于點O,連結(jié),,通過四棱臺的性質(zhì)以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質(zhì)定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結(jié)交交于點O,連結(jié),,由多面體為四棱臺可知四點共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉(zhuǎn)化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設(shè)O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點睛】思路點睛:(1)找兩個平面的交線,可通過兩個平面的交點找到,也可利用線面平行的性質(zhì)找和交線的平行直線;(2)求直線和平面所成角,過直線上一點做平面的垂線,則垂足和斜足連線與直線所成角即為直線和平面所成角.20、(1).(2).【解析】(1)由已知得,均為真命題,分別求得為真命題,為真命題時,實數(shù)的取值范圍,再由集合的交集運算求得答案;(2)由已知得,一真一假,建立不等式組,求解即可.【小問1詳解】解:因為“且”為真命題,所以,均為真命題若為真命題,則,解得;若為真命題,則,當且僅當,即時,等號成立,此時故實數(shù)的取值范圍是;【小問2詳解】解:若“或”為真,“且”為假,則,一真一假當真,假時,則得;當假,真時,則得故實數(shù)的取值范圍為21、(1)(2)【解析】(1)由已知直接可得;(2)聯(lián)立方程組求出A,兩點坐標,再由兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025英國影視制作行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2025花影繽紛現(xiàn)代花藝師職業(yè)前途行業(yè)盛狀前景分析規(guī)劃發(fā)展重點報告
- 2025重慶燃氣集團股份有限公司招聘筆試備考重點題庫及答案解析
- 2025北京西城區(qū)《中國郵政報》社有限公司招聘2人備考考試題庫及答案解析
- 歷史社會七上第三單元第四課逐水草而居全國示范課微課金獎教案(2025-2026學(xué)年)
- 七年級歷史上冊第課神奇的遠古傳說教案岳麓版
- 《古鼎記趣》教案(2025-2026學(xué)年)
- 時間序列數(shù)據(jù)的平穩(wěn)性檢驗教案
- 藥敏試驗結(jié)果解讀臨床應(yīng)用教案
- 版圓的有關(guān)性質(zhì)教案
- 2025年下半年上海當代藝術(shù)博物館公開招聘工作人員(第二批)參考筆試試題及答案解析
- 2026國家糧食和物資儲備局垂直管理局事業(yè)單位招聘應(yīng)屆畢業(yè)生27人考試歷年真題匯編附答案解析
- 2024年江蘇省普通高中學(xué)業(yè)水平測試小高考生物、地理、歷史、政治試卷及答案(綜合版)
- 方格網(wǎng)計算土方表格
- 學(xué)校計算機機房設(shè)計方案
- 證券投資案例分析題及答案
- 煎藥室崗前培訓(xùn)PPT
- 家具制造企業(yè)安全檢查表優(yōu)質(zhì)資料
- 如家酒店新版
- GA 1016-2012槍支(彈藥)庫室風險等級劃分與安全防范要求
- 《電能質(zhì)量分析》課程教學(xué)大綱
評論
0/150
提交評論