版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025-2026學(xué)年泰安第一中學(xué)高二上數(shù)學(xué)期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若離散型隨機(jī)變量的所有可能取值為1,2,3,…,n,且取每一個(gè)值的概率相同,若,則n的值為()A.4 B.6C.9 D.102.正四棱錐中,,則直線與平面所成角的正弦值為A. B.C. D.3.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥04.已知函數(shù),,若對(duì)任意的,,都有成立,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.直線的傾斜角的取值范圍是()A. B.C. D.6.已知雙曲線的兩個(gè)焦點(diǎn)為,,是此雙曲線上的一點(diǎn),且滿足,,則該雙曲線的方程是()A. B.C. D.7.函數(shù),則的值為()A. B.C. D.8.已知E、F分別為橢圓的左、右焦點(diǎn),傾斜角為的直線l過點(diǎn)E,且與橢圓交于A,B兩點(diǎn),則的周長(zhǎng)為A.10 B.12C.16 D.209.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.10.橢圓的左、右焦點(diǎn)分別為、,上存在兩點(diǎn)、滿足,,則的離心率為()A. B.C. D.11.第屆全運(yùn)會(huì)于年月在陜西西安順利舉辦,其中水上項(xiàng)目在西安奧體中心游泳跳水館進(jìn)行,為了應(yīng)對(duì)比賽,大會(huì)組委會(huì)將對(duì)泳池進(jìn)行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費(fèi)用為元,設(shè)入水處的較短池壁長(zhǎng)度為,且據(jù)估計(jì)較短的池壁維修費(fèi)用與池壁長(zhǎng)度成正比,且比例系數(shù)為,較長(zhǎng)的池壁維修費(fèi)用滿足代數(shù)式,則當(dāng)泳池的維修費(fèi)用最低時(shí)值為()A. B.C. D.12.設(shè)為等差數(shù)列的前項(xiàng)和,若,則的值為()A.14 B.28C.36 D.48二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若向量與向量平行,則實(shí)數(shù)______14.已知函數(shù),若,則________.15.設(shè)數(shù)列滿足且,則________.數(shù)列的通項(xiàng)=________.16.如圖,AD與BC是三棱錐中互相垂直的棱,,(c為常數(shù)).若,則實(shí)數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)命題p:實(shí)數(shù)x滿足x≤2,或x>6,命題q:實(shí)數(shù)x滿足x2﹣3ax+2a2<0(其中a>0)(1)若a=2,且為真命題,求實(shí)數(shù)x的取值范圍;(2)若q是的充分不必要條件,求實(shí)數(shù)a的取值范圍.18.(12分)已知雙曲線與雙曲線的漸近線相同,且經(jīng)過點(diǎn).(1)求雙曲線的方程;(2)已知雙曲線的左右焦點(diǎn)分別為,直線經(jīng)過,傾斜角為與雙曲線交于兩點(diǎn),求的面積.19.(12分)已知橢圓C:的右頂點(diǎn)為A,上頂點(diǎn)為B.離心率為,(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右焦點(diǎn)為F,過點(diǎn)F的直線l與橢圓C相交于D,E兩點(diǎn),直線:與x軸相交于點(diǎn)H,過點(diǎn)D作,垂足為①求四邊形ODHE(O為坐標(biāo)原點(diǎn))面積的取值范圍;②證明:直線過定點(diǎn)G,并求點(diǎn)G的坐標(biāo)20.(12分)某外語學(xué)校的一個(gè)社團(tuán)中有7名同學(xué),其中2人只會(huì)法語;2人只會(huì)英語,3人既會(huì)法語又會(huì)英語,現(xiàn)選派3人到法國(guó)的學(xué)校交流訪問(1)在選派的3人中恰有2人會(huì)法語的概率;(2)在選派的3人中既會(huì)法語又會(huì)英語的人數(shù)X的分布列和數(shù)學(xué)期望21.(12分)求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程(1)中心在原點(diǎn),實(shí)軸在軸上,一個(gè)焦點(diǎn)在直線上的等軸雙曲線;(2)橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率等于,且它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn);(3)經(jīng)過點(diǎn)拋物線22.(10分)已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,P(5,a)為拋物線C上一點(diǎn),且|PF|=8(1)求拋物線C的方程;(2)過點(diǎn)F的直線l與拋物線C交于A,B兩點(diǎn),以線段AB為直徑的圓過Q(0,﹣3),求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)分布列即可求出【詳解】因?yàn)?,所以故選:D2、C【解析】建立合適的空間直角坐標(biāo)系,求出和平面的法向量,直線與平面所成角的正弦值即為與的夾角的余弦值的絕對(duì)值,利用夾角公式求出即可.【詳解】建立如圖所示的空間直角坐標(biāo)系.有圖知,由題得、、、.,,.設(shè)平面的一個(gè)法向量,則,,令,得,,.設(shè)直線與平面所成的角為,則.故選:C.【點(diǎn)睛】本題考查線面角的求解,利用向量法可簡(jiǎn)化分析過程,直接用計(jì)算的方式解決問題,是基礎(chǔ)題.3、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.4、B【解析】根據(jù)題意,將問題轉(zhuǎn)化為對(duì)任意的,,利用導(dǎo)數(shù)求得的最大值,再分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最大值,即可求得參數(shù)的取值范圍.【詳解】由題可知:對(duì)任意的,,都有恒成立,故可得對(duì)任意的,;又,則,故在單調(diào)遞減,在單調(diào)遞增,又,,則當(dāng)時(shí),,.對(duì)任意的,,即,恒成立.也即,不妨令,則,故在單調(diào)遞增,在單調(diào)遞減.故,則只需.故選:B.5、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設(shè)直線的傾斜角為,則,解得.故選:A.6、A【解析】由,可得進(jìn)一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點(diǎn)睛】方法點(diǎn)睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點(diǎn)所在的坐標(biāo)軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).7、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B8、D【解析】利用橢圓的定義即可得到結(jié)果【詳解】橢圓,可得,三角形的周長(zhǎng),,所以:周長(zhǎng),由橢圓的第一定義,,所以,周長(zhǎng)故選D【點(diǎn)睛】本題考查橢圓簡(jiǎn)單性質(zhì)的應(yīng)用,橢圓的定義的應(yīng)用,三角形的周長(zhǎng)的求法,屬于基本知識(shí)的考查9、B【解析】求出已知雙曲線的漸近線方程,逐一驗(yàn)證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B10、A【解析】作點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),連接、、、,推導(dǎo)出、、三點(diǎn)共線,利用橢圓的定義可求得、、、,推導(dǎo)出,利用勾股定理可得出關(guān)于、的齊次等式,即可求得該橢圓的離心率.【詳解】作點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),連接、、、,則為、的中點(diǎn),故四邊形為平行四邊形,故且,則,所以,,故、、三點(diǎn)共線,由橢圓定義,,有,所以,則,再由橢圓定義,有,因?yàn)椋?,在中,即,所以,離心率故選:A.11、A【解析】根據(jù)題意得到泳池維修費(fèi)用的的解析式,再利用導(dǎo)數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費(fèi)用為元,則由題意得,則,令,解得,當(dāng)時(shí),;當(dāng)時(shí),,故當(dāng)時(shí),有最小值因此,當(dāng)較短池壁為時(shí),泳池的總維修費(fèi)用最低故選A12、D【解析】利用等差數(shù)列的前項(xiàng)和公式以及等差數(shù)列的性質(zhì)即可求出.【詳解】因?yàn)闉榈炔顢?shù)列的前項(xiàng)和,所以故選:D【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式的計(jì)算以及等差數(shù)列性質(zhì)的應(yīng)用,屬于較易題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】先求出的坐標(biāo),進(jìn)而根據(jù)空間向量平行的坐標(biāo)運(yùn)算求得答案.【詳解】由題意,,因?yàn)椋源嬖趯?shí)數(shù)使得.故答案為:2.14、【解析】求出導(dǎo)函數(shù),確定導(dǎo)函數(shù)奇函數(shù),然后可求值【詳解】由已知,它是奇函數(shù),∴故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)算,考查函數(shù)的奇偶性,確定函數(shù)的奇偶性是解題關(guān)鍵15、①.5②.【解析】設(shè),根據(jù)題意得到數(shù)列是等差數(shù)列,求得,得到,利用,結(jié)合“累加法”,即可求得.【詳解】解:由題意,數(shù)列滿足,所以當(dāng)時(shí),,,解得,設(shè),則,且,所以數(shù)列是等差數(shù)列,公差為,首項(xiàng)為,所以,即,所以,當(dāng)時(shí),可得,其中也滿足,所以數(shù)列的通項(xiàng)公式為.故答案為:;.16、【解析】分析得都在以為焦點(diǎn)的橢球上,再利用橢球的性質(zhì)得到,化簡(jiǎn)即得解.【詳解】解:因?yàn)?,所以都在以為焦點(diǎn)橢球上,由橢球的性質(zhì)得,是垂直橢球焦點(diǎn)所在直線的弦,的最大值為,此時(shí)共面且過中點(diǎn),即故實(shí)數(shù)的取值范圍為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1){x|2<x<4};(2).【解析】(1)分別求出命題和為真時(shí)對(duì)應(yīng)的取值范圍,即可求出;(2)由題可知,列出不等式組即可求解.【詳解】解:(1)當(dāng)a=2時(shí),命題q:2<x<4,∵命題p:x≤2或x>6,,又為真命題,∴x滿足,∴2<x<4,∴實(shí)數(shù)x的取值范圍{x|2<x<4};(2)由題意得:命題q:a<x<2a;∵q是的充分不必要條件,,,解得,∴實(shí)數(shù)a的取值范圍.【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查根據(jù)充分不必要條件求參數(shù),一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對(duì)應(yīng)集合是對(duì)應(yīng)集合的真子集;(2)若是的充分不必要條件,則對(duì)應(yīng)集合是對(duì)應(yīng)集合的真子集;(3)若是的充分必要條件,則對(duì)應(yīng)集合與對(duì)應(yīng)集合相等;(4)若是的既不充分又不必要條件,則對(duì)應(yīng)的集合與對(duì)應(yīng)集合互不包含18、(1);(2).【解析】(1)由兩條雙曲線有共同漸近線,可令雙曲線方程為,求出即可得雙曲線的方程;(2)根據(jù)已知有直線為,由其與雙曲線的位置關(guān)系,結(jié)合弦長(zhǎng)公式、點(diǎn)線距離公式及三角形面積公式求的面積.【詳解】(1)設(shè)所求雙曲線方程為,代入點(diǎn)得:,即,∴雙曲線方程為,即.(2)由(1)知:,即直線方程為.設(shè),聯(lián)立得,滿足且,,由弦長(zhǎng)公式得,點(diǎn)到直線的距離.所以【點(diǎn)睛】本題考查了雙曲線,根據(jù)雙曲線共漸近線求雙曲線方程,由直線與雙曲線的相交位置關(guān)系求原點(diǎn)與交點(diǎn)構(gòu)成三角形的面積,綜合應(yīng)用了弦長(zhǎng)公式、點(diǎn)線距離公式、三角形面積公式,屬于基礎(chǔ)題.19、(1);(2)①;②詳見解析;.【解析】(1)由題得,即求;(2)①由題可設(shè),利用韋達(dá)定理法可得,進(jìn)而可得四邊形ODHE面積,再利用對(duì)勾函數(shù)的性質(zhì)可求范圍;②由題可得,令,通過計(jì)算可得,即得.【小問1詳解】由題可得,解得,∴橢圓C的標(biāo)準(zhǔn)方程.【小問2詳解】①由題可知,可設(shè)直線,,由,可得,∴,,∴,∴四邊形ODHE面積,令,則,因?yàn)椋?,?dāng)時(shí),取等號(hào),∴,∴四邊形ODHE面積取值范圍為;②由上可得,直線,令,得,由,可得,∴,∴直線過定點(diǎn)G.20、(1)(2)分布列見解析;【解析】(1)利用組合的知識(shí)計(jì)算出基本事件總數(shù)和滿足題意的基本事件數(shù),根據(jù)古典概型概率公式求得結(jié)果;(2)確定所有可能的取值,根據(jù)超幾何分布概率公式可計(jì)算出每個(gè)取值對(duì)應(yīng)的概率,進(jìn)而得到分布列和數(shù)學(xué)期望.【小問1詳解】名同學(xué)中,會(huì)法語的人數(shù)為人,從人中選派人,共有種選法;其中恰有人會(huì)法語共有種選法;選派的人中恰有人會(huì)法語的概率.【小問2詳解】由題意可知:所有可能的取值為,;;;;的分布列為:數(shù)學(xué)期望為21、(1)(2)(3)或【解析】(1)由已知求得,再由等軸雙曲線的性質(zhì)可求得則,由此可求得雙曲線的方程;(2)由已知求得拋物線的焦點(diǎn)為,得出橢圓的,再根據(jù)橢圓的離心率求得,由此可得出橢圓的方程;(3)設(shè)拋物線的標(biāo)準(zhǔn)方程為:或,代入點(diǎn)求解即可.【小問1詳解】解:對(duì)于直線,令,得,所以,則,所以,所以中心在原點(diǎn),實(shí)軸在軸上,一個(gè)焦點(diǎn)在直線上的等軸雙曲線的方程為;【小問2詳解】解:由得拋物線的焦點(diǎn)為,所以對(duì)于橢圓,,又橢圓的離心率為,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨床打呼嚕改善藥物藥物特征及注意事項(xiàng)
- 2025年大學(xué)急救護(hù)理技術(shù)(技能實(shí)訓(xùn))試題及答案
- 2025年高職中醫(yī)康復(fù)技術(shù)(針灸技術(shù))試題及答案
- 2025年中職烘焙技術(shù)應(yīng)用管理(管理技術(shù))試題及答案
- 2025年高職物業(yè)管理(安全管理)試題及答案
- 2025年大學(xué)第一學(xué)年(經(jīng)濟(jì)學(xué))經(jīng)濟(jì)學(xué)專業(yè)基礎(chǔ)綜合測(cè)試試題及答案
- 中職第一學(xué)年(畜牧獸醫(yī))畜禽養(yǎng)殖技術(shù)2026年階段測(cè)試題及答案
- 2025年高職專科(針灸推拿)針灸推拿治療綜合測(cè)試題及答案
- 高三生物(綜合應(yīng)用)2025-2026年下學(xué)期期末測(cè)試卷
- 2025年大學(xué)生物技術(shù)(發(fā)酵工程技術(shù))試題及答案
- 寬容和感恩的培訓(xùn)
- 廣東省汕頭市金平區(qū)2024-2025學(xué)年七年級(jí)上學(xué)期期末考試數(shù)學(xué)試題
- 急性肺栓塞診斷和治療指南2025
- 中國(guó)礦業(yè)大學(xué)常俊林版《自動(dòng)控制原理》1-6章課后習(xí)題解答
- LY/T 1718-2017低密度和超低密度纖維板
- 與食品經(jīng)營(yíng)相適應(yīng)的主要設(shè)備設(shè)施布局和操作流程文件
- 都江堰市政管網(wǎng)改造工程施工組織設(shè)計(jì)
- 熱力學(xué)發(fā)展史概述課件
- 科技攻關(guān)計(jì)劃(重點(diǎn))項(xiàng)目結(jié)項(xiàng)報(bào)告書
- DBJ-T13-369-2021 福建省裝配式建筑非砌筑內(nèi)隔墻技術(shù)標(biāo)準(zhǔn)
- 潔凈區(qū)人員數(shù)量驗(yàn)證
評(píng)論
0/150
提交評(píng)論