合肥42中八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第1頁
合肥42中八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第2頁
合肥42中八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第3頁
合肥42中八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第4頁
合肥42中八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

合肥42中八年級(jí)上冊(cè)壓軸題數(shù)學(xué)模擬試卷及答案一、壓軸題1.(1)在等邊三角形ABC中,①如圖①,D,E分別是邊AC,AB上的點(diǎn)且AE=CD,BD與EC交于點(diǎn)F,則∠BFE的度數(shù)是度;②如圖②,D,E分別是邊AC,BA延長線上的點(diǎn)且AE=CD,BD與EC的延長線交于點(diǎn)F,此時(shí)∠BFE的度數(shù)是度;(2)如圖③,在△ABC中,AC=BC,∠ACB是銳角,點(diǎn)O是AC邊的垂直平分線與BC的交點(diǎn),點(diǎn)D,E分別在AC,OA的延長線上,AE=CD,BD與EC的延長線交于點(diǎn)F,若∠ACB=α,求∠BFE的大小.(用含α的代數(shù)式表示).解析:(1)①60°;②60°;(2)∠BFE=α.【解析】【分析】(1)①先證明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先證明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)證明△AEC≌△CDB得到∠E=∠D,則∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【詳解】(1)如圖①中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案為60.(2)如圖②中,∵△ABC是等邊三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案為60.(3)如圖③中,∵點(diǎn)O是AC邊的垂直平分線與BC的交點(diǎn),∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【點(diǎn)睛】本題綜合考查了三角形全等以及三角形外角和定理.2.完全平方公式:適當(dāng)?shù)淖冃?,可以解決很多的數(shù)學(xué)問題.例如:若,求的值.解:因?yàn)樗运缘茫鶕?jù)上面的解題思路與方法,解決下列問題:(1)若,求的值;(2)①若,則;②若則;(3)如圖,點(diǎn)是線段上的一點(diǎn),以為邊向兩邊作正方形,設(shè),兩正方形的面積和,求圖中陰影部分面積.解析:(1)12;(2)①6;②17;(3)【解析】【分析】(1)根據(jù)完全平方公式的變形應(yīng)用,解決問題;(2)①兩邊平方,再將代入計(jì)算;②兩邊平方,再將代入計(jì)算;(3)由題意可得:,,兩邊平方從而得到,即可算出結(jié)果.【詳解】解:(1);;;又;,,∴.(2)①,;又,.②由,;又,.(3)由題意可得,,;,;,;圖中陰影部分面積為直角三角形面積,,.【點(diǎn)睛】本題主要考查了完全平方公式的適當(dāng)變形靈活應(yīng)用,(1)可直接應(yīng)用公式變形解決問題.(2)①②小題都需要根據(jù)題意得出兩個(gè)因式和或者差的結(jié)果,合并同類項(xiàng)得①,②是解決本題的關(guān)鍵,再根據(jù)完全平方公式變形應(yīng)用得出答案.(3)根據(jù)幾何圖形可知選段,再根據(jù)兩個(gè)正方形面積和為18,利用完全平方公式變形應(yīng)用得到,再根據(jù)直角三角形面積公式得出答案.3.探究發(fā)現(xiàn):如圖①,在中,內(nèi)角的平分線與外角的平分線相交于點(diǎn).(1)若,則;若,則;(2)由此猜想:與的關(guān)系為(不必說明理由).拓展延伸:如圖②,四邊形的內(nèi)角與外角的平分線相交于點(diǎn),.(3)若,,求的度數(shù),由此猜想與,之間的關(guān)系,并說明理由.解析:(1)40°25°;(2)(或)(3)=【解析】【分析】(1)先根據(jù)兩角平分線寫出對(duì)應(yīng)的等式關(guān)系,再分別寫出兩個(gè)三角形內(nèi)角和的等式關(guān)系,最后聯(lián)立兩等式化解,將的角度帶入即可求解;(2)由(1)可得,即可求解;(3)在與的平分線相交于點(diǎn),可知,又因?yàn)椋瑑芍本€平行內(nèi)錯(cuò)角相等,得出,再根據(jù)三角形一外角等于不相鄰的兩個(gè)內(nèi)角的和,得出,再由四邊形的內(nèi)角和定理得出,最后在中:,代入整理即可得出結(jié)論.【詳解】解:(1)由題可知:BE為的角平分線,CE為的角平分線,=2=2,=2,,三角形內(nèi)角和等于,在中:,即:,①,在中:,即:,②,綜上所述聯(lián)立①②,由①-②×2可得:,,,,當(dāng),則;當(dāng),則;故答案為,;(2)由(1)知:(或);(3)∵與的平分線相交于點(diǎn),∴,,又∵,∴(兩直線平行,內(nèi)錯(cuò)角相等),∵是的一個(gè)外角,∴(三角形一外角等于不相鄰的兩個(gè)內(nèi)角的和),在四邊形中,四邊形內(nèi)角和為,,,∴,∴①,∴,即,在中:,,由上可得:,②,又∵,∴,,,由①②可得,,,.【點(diǎn)睛】本題主要考查了三角形的外角性質(zhì)的應(yīng)用和角平分線的定義,能正確運(yùn)用性質(zhì)進(jìn)行推理和計(jì)算是解此題的關(guān)鍵,注意三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.4.閱讀材料并完成習(xí)題:在數(shù)學(xué)中,我們會(huì)用“截長補(bǔ)短”的方法來構(gòu)造全等三角形解決問題.請(qǐng)看這個(gè)例題:如圖1,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四邊形ABCD的面積.解:延長線段CB到E,使得BE=CD,連接AE,我們可以證明△BAE≌△DAC,根據(jù)全等三角形的性質(zhì)得AE=AC=2,∠EAB=∠CAD,則∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四邊形ABCD=S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,這樣,四邊形ABCD的面積就轉(zhuǎn)化為等腰直角三角形EAC面積.(1)根據(jù)上面的思路,我們可以求得四邊形ABCD的面積為cm2.(2)請(qǐng)你用上面學(xué)到的方法完成下面的習(xí)題.如圖2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五邊形FGHMN的面積.解析:(1)2;(2)4【解析】【分析】(1)根據(jù)題意可直接求等腰直角三角形EAC的面積即可;(2)延長MN到K,使NK=GH,連接FK、FH、FM,由(1)易證,則有FK=FH,因?yàn)镠M=GH+MN易證,故可求解.【詳解】(1)由題意知,故答案為2;(2)延長MN到K,使NK=GH,連接FK、FH、FM,如圖所示:FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,∠FNK=∠FGH=90°,,F(xiàn)H=FK,又FM=FM,HM=KM=MN+GH=MN+NK,,MK=FN=2cm,.【點(diǎn)睛】本題主要考查全等三角形的性質(zhì)與判定,關(guān)鍵是根據(jù)截長補(bǔ)短法及割補(bǔ)法求面積的運(yùn)用.5.小敏與同桌小穎在課下學(xué)習(xí)中遇到這樣一道數(shù)學(xué)題:“如圖(1),在等邊三角形中,點(diǎn)在上,點(diǎn)在的延長線上,且,試確定線段與的大小關(guān)系,并說明理由”.小敏與小穎討論后,進(jìn)行了如下解答:(1)取特殊情況,探索討論:當(dāng)點(diǎn)為的中點(diǎn)時(shí),如圖(2),確定線段與的大小關(guān)系,請(qǐng)你寫出結(jié)論:_____(填“”,“”或“”),并說明理由.(2)特例啟發(fā),解答題目:解:題目中,與的大小關(guān)系是:_____(填“”,“”或“”).理由如下:如圖(3),過點(diǎn)作EF∥BC,交于點(diǎn).(請(qǐng)你將剩余的解答過程完成)(3)拓展結(jié)論,設(shè)計(jì)新題:在等邊三角形中,點(diǎn)在直線上,點(diǎn)在直線上,且,若△的邊長為,,求的長(請(qǐng)你畫出圖形,并直接寫出結(jié)果).解析:(1),理由詳見解析;(2),理由詳見解析;(3)3或1【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)、三線合一的性質(zhì)證明即可;(2)根據(jù)等邊三角形的性質(zhì),證明△≌△即可;(3)注意區(qū)分當(dāng)點(diǎn)在的延長線上時(shí)和當(dāng)點(diǎn)在的延長線上時(shí)兩種情況,不要遺漏.【詳解】解:(1),理由如下:,∵△是等邊三角形,,點(diǎn)為的中點(diǎn),,,,,,;故答案為:;(2),理由如下:如圖3:∵△為等邊三角形,且EF∥BC,,,;;,,,在△與△中,,∴△≌△(AAS),,∴△為等邊三角形,,.(3)①如圖4,當(dāng)點(diǎn)在的延長線上時(shí),過點(diǎn)作EF∥BC,交的延長線于點(diǎn):則,;,;∵△為等邊三角形,,,,;而,,;在△和△中,,∴△≌△(AAS),;∵△為等邊三角形,,,;②如圖5,當(dāng)點(diǎn)在的延長線上時(shí),過點(diǎn)作EF∥BC,交的延長線于點(diǎn):類似上述解法,同理可證:,,.【點(diǎn)睛】本題考查等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì).熟練掌握等邊三角形的性質(zhì),構(gòu)造合適的全等三角形是解題的關(guān)鍵.6.已知,如圖1,直線l2⊥l1,垂足為A,點(diǎn)B在A點(diǎn)下方,點(diǎn)C在射線AM上,點(diǎn)B、C不與點(diǎn)A重合,點(diǎn)D在直線11上,點(diǎn)A的右側(cè),過D作l3⊥l1,點(diǎn)E在直線l3上,點(diǎn)D的下方.(1)l2與l3的位置關(guān)系是;(2)如圖1,若CE平分∠BCD,且∠BCD=70°,則∠CED=°,∠ADC=°;(3)如圖2,若CD⊥BD于D,作∠BCD的角平分線,交BD于F,交AD于G.試說明:∠DGF=∠DFG;(4)如圖3,若∠DBE=∠DEB,點(diǎn)C在射線AM上運(yùn)動(dòng),∠BDC的角平分線交EB的延長線于點(diǎn)N,在點(diǎn)C的運(yùn)動(dòng)過程中,探索∠N:∠BCD的值是否變化,若變化,請(qǐng)說明理由;若不變化,請(qǐng)直接寫出比值.解析:(1)互相平行;(2)35,20;(3)見解析;(4)不變,【解析】【分析】(1)根據(jù)平行線的判定定理即可得到結(jié)論;(2)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(3)根據(jù)角平分線的定義和平行線的性質(zhì)即可得到結(jié)論;(4)根據(jù)角平分線的定義,平行線的性質(zhì),三角形外角的性質(zhì)即可得到結(jié)論.【詳解】解:(1)直線l2⊥l1,l3⊥l1,∴l(xiāng)2∥l3,即l2與l3的位置關(guān)系是互相平行,故答案為:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案為:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不會(huì)變化,等于;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=.【點(diǎn)睛】本題考查了三角形的綜合題,三角形的內(nèi)角和定理,三角形外角的性質(zhì),平行線的判定和性質(zhì),角平分線的定義,正確的識(shí)別圖形進(jìn)行推理是解題的關(guān)鍵.7.如圖1.在△ABC中,∠ACB=90°,AC=BC=10,直線DE經(jīng)過點(diǎn)C,過點(diǎn)A,B分別作AD⊥DE,BE⊥DE,垂足分別為點(diǎn)D和E,AD=8,BE=6.(1)①求證:△ADC≌△CEB;②求DE的長;(2)如圖2,點(diǎn)M以3個(gè)單位長度/秒的速度從點(diǎn)C出發(fā)沿著邊CA運(yùn)動(dòng),到終點(diǎn)A,點(diǎn)N以8個(gè)單位長度/秒的速度從點(diǎn)B出發(fā)沿著線BC—CA運(yùn)動(dòng),到終點(diǎn)A.M,N兩點(diǎn)同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒(t>0),當(dāng)點(diǎn)N到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),過點(diǎn)M作PM⊥DE于點(diǎn)P,過點(diǎn)N作QN⊥DE于點(diǎn)Q;①當(dāng)點(diǎn)N在線段CA上時(shí),用含有t的代數(shù)式表示線段CN的長度;②當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)N重合;③當(dāng)△PCM與△QCN全等時(shí),則t=.解析:(1)①證明見解析;②DE=14;(2)①8t-10;②t=2;③t=【解析】【分析】(1)①先證明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性質(zhì)得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①當(dāng)點(diǎn)N在線段CA上時(shí),根據(jù)CN=CN?BC即可得出答案;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得t=2即可;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,則CM=CN,得3t=10?8t,解得t=1011;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,則3t=8t?10,解得t=2;即可得出答案.【詳解】(1)①證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①當(dāng)點(diǎn)N在線段CA上時(shí),如圖3所示:CN=CN?BC=8t?10;②點(diǎn)M與點(diǎn)N重合時(shí),CM=CN,即3t=8t?10,解得:t=2,∴當(dāng)t為2秒時(shí),點(diǎn)M與點(diǎn)N重合;③分兩種情況:當(dāng)點(diǎn)N在線段BC上時(shí),△PCM≌△QNC,∴CM=CN,∴3t=10?8t,解得:t=;當(dāng)點(diǎn)N在線段CA上時(shí),△PCM≌△QCN,點(diǎn)M與N重合,CM=CN,則3t=8t?10,解得:t=2;綜上所述,當(dāng)△PCM與△QCN全等時(shí),則t等于s或2s,故答案為:s或2s.【點(diǎn)睛】本題是三角形綜合題目,考查了全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、直角三角形的性質(zhì)、分類討論等知識(shí);本題綜合性強(qiáng),熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.8.(概念認(rèn)識(shí))如圖①,在∠ABC中,若∠ABD=∠DBE=∠EBC,則BD,BE叫做∠ABC的“三分線”.其中,BD是“鄰AB三分線”,BE是“鄰BC三分線”.(問題解決)(1)如圖②,在△ABC中,∠A=70°,∠B=45°,若∠B的三分線BD交AC于點(diǎn)D,則∠BDC=°;(2)如圖③,在△ABC中,BP、CP分別是∠ABC鄰AB三分線和∠ACB鄰AC三分線,且BP⊥CP,求∠A的度數(shù);(延伸推廣)(3)在△ABC中,∠ACD是△ABC的外角,∠B的三分線所在的直線與∠ACD的三分線所在的直線交于點(diǎn)P.若∠A=m°,∠B=n°,直接寫出∠BPC的度數(shù).(用含m、n的代數(shù)式表示)解析:(1)85或100;(2)45°;(3)m或m或m+n或m-n或n-m【解析】【分析】(1)根據(jù)題意可得的三分線有兩種情況,畫圖根據(jù)三角形的外角性質(zhì)即可得的度數(shù);(2)根據(jù)、分別是鄰三分線和鄰三分線,且可得,進(jìn)而可求的度數(shù);(3)根據(jù)的三分線所在的直線與的三分線所在的直線交于點(diǎn).分四種情況畫圖:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí);情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),再根據(jù),,即可求出的度數(shù).【詳解】解:(1)如圖,當(dāng)是“鄰三分線”時(shí),;當(dāng)是“鄰三分線”時(shí),;故答案為:85或100;(2),,,又、分別是鄰三分線和鄰三分線,,,,,在中,.(3)分4種情況進(jìn)行畫圖計(jì)算:情況一:如圖①,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),;情況二:如圖②,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),;情況三:如圖③,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),;情況四:如圖④,當(dāng)和分別是“鄰三分線”、“鄰三分線”時(shí),①當(dāng)時(shí),;②當(dāng)時(shí),.【點(diǎn)睛】本題考查了三角形的外角性質(zhì),解決本題的關(guān)鍵是掌握三角形的外角性質(zhì).注意要分情況討論.9.如圖,△ABC是等邊三角形,△ADC與△ABC關(guān)于直線AC對(duì)稱,AE與CD垂直交BC的延長線于點(diǎn)E,∠EAF=45°,且AF與AB在AE的兩側(cè),EF⊥AF.(1)依題意補(bǔ)全圖形.(2)①在AE上找一點(diǎn)P,使點(diǎn)P到點(diǎn)B,點(diǎn)C的距離和最短;②求證:點(diǎn)D到AF,EF的距離相等.解析:(1)詳見解析;(2)①詳見解析;②詳見解析.【解析】【分析】(1)本題考查理解題意能力,按照題目所述依次作圖即可.(2)①本題考查線段和最短問題,需要通過垂直平分線的性質(zhì)將所求線段轉(zhuǎn)化為其他等量線段之和,以達(dá)到求解目的.②本題考查垂直平分線的判定以及全等三角形的證明,繼而利用角的平分線性質(zhì)即可得出結(jié)論.【詳解】(1)補(bǔ)全圖形,如圖1所示(2)①如圖2,連接BD,P為BD與AE的交點(diǎn)∵等邊△ACD,AE⊥CD∴PC=PD,PC+PB最短等價(jià)于PB+PD最短故B,D之間直線最短,點(diǎn)P即為所求.②證明:連接DE,DF.如圖3所示∵△ABC,△ADC是等邊三角形∴AC=AD,∠ACB=∠CAD=60°∵AE⊥CD∴∠CAE=∠CAD=30°∴∠CEA=∠ACB﹣∠CAE=30°∴∠CAE=∠CEA∴CA=CE∴CD垂直平分AE∴DA=DE∴∠DAE=∠DEA∵EF⊥AF,∠EAF=45°∴∠FEA=45°∴∠FEA=∠EAF∴FA=FE,∠FAD=∠FED∴△FAD≌△FED(SAS)∴∠AFD=∠EFD∴點(diǎn)D到AF,EF的距離相等.【點(diǎn)睛】本題第一問作圖極為重要,要求對(duì)題意有較深的理解,同時(shí)對(duì)于垂直平分線以及角平分線的定義要清楚,能通過題目文字所述轉(zhuǎn)化為考點(diǎn),信息轉(zhuǎn)化能力需要多做題目加以提升.10.已知:中,過B點(diǎn)作BE⊥AD,.(1)如圖1,點(diǎn)在的延長線上,連,作于,交于點(diǎn).求證:;(2)如圖2,點(diǎn)在線段上,連,過作,且,連交于,連,問與有何數(shù)量關(guān)系,并加以證明;(3)如圖3,點(diǎn)在CB延長線上,且,連接、的延長線交于點(diǎn),若,請(qǐng)直接寫出的值.解析:(1)見詳解,(2),證明見詳解,(3).【解析】【分析】(1)欲證明,只要證明即可;(2)結(jié)論:.如圖2中,作于.只要證明,推出,,由,推出即可解決問題;(3)利用(2)中結(jié)論即可解決問題;【詳解】(1)證明:如圖1中,于,,,,,(AAS),.(2)結(jié)論:.理由:如圖2中,作于.,,,,,,,,,,,,,,,.(3)如圖3中,作于交AC延長線于.,,,,,,,,,,,,,,,.,設(shè),則,,.【點(diǎn)睛】本題考查三角形綜合題、全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考?jí)狠S題.另外對(duì)于類似連續(xù)幾步的綜合題,一般前一步為后一步提供解題的條件或方法.11.閱讀并填空:如圖,是等腰三角形,,是邊延長線上的一點(diǎn),在邊上且聯(lián)接交于,如果,那么,為什么?解:過點(diǎn)作交于所以(兩直線平行,同位角相等)(________)在與中所以,(________)所以(________)因?yàn)椋ㄒ阎┧裕╛_______)所以(等量代換)所以(________)所以解析:見解析【解析】【分析】先根據(jù)平行線的性質(zhì),得到角的關(guān)系,然后證明,寫出證明過程和依據(jù)即可.【詳解】解:過點(diǎn)作交于,∴(兩直線平行,同位角相等),∴(兩直線平行,內(nèi)錯(cuò)角相等),在與中,∴,()∴(全等三角形對(duì)應(yīng)邊相等)∵(已知)∴(等邊對(duì)等角)∴(等量代換)∴(等角對(duì)等邊)∴;【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),平行線的性質(zhì),解題的關(guān)鍵是由平行線的性質(zhì)正確找到證明三角形全等的條件,從而進(jìn)行證明.12.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點(diǎn)D.①當(dāng)α=70°時(shí),∠BDC度數(shù)=度(直接寫出結(jié)果);②∠BDC的度數(shù)為(用含α的代數(shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE角平分線交于點(diǎn)F,求∠BFC的度數(shù)(用含α的代數(shù)式表示).(3)在(2)的條件下,將△FBC以直線BC為對(duì)稱軸翻折得到△GBC,∠GBC的角平分線與∠GCB的角平分線交于點(diǎn)M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).解析:(1)(1)①125°;②,(2);(3)【解析】【分析】(1)①由三角形內(nèi)角和定理易得∠ABC+∠ACB=110°,然后根據(jù)角平分線的定義,結(jié)合三角形內(nèi)角和定理可求∠BDC;②由三角形內(nèi)角和定理易得∠ABC+∠ACB=180°-∠A,采用①的推導(dǎo)方法即可求解;(2)由三角形外角性質(zhì)得,然后結(jié)合角平分線的定義求解;(3)由折疊的對(duì)稱性得,結(jié)合(1)②的結(jié)論可得答案.【詳解】解:(1)①∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣70°)=125°②∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α.故答案分別為125°,90°+α.(2)∵BF和CF分別平分∠ABC和∠ACE∴,,∴=即.(3)由軸對(duì)稱性質(zhì)知:,由(1)②可得,∴.【點(diǎn)睛】本題考查三角形中與角平分線有關(guān)的角度計(jì)算,熟練掌握三角形內(nèi)角和定理,以及三角形的外角性質(zhì)是解題的關(guān)鍵.13.如圖,若要判定紙帶兩條邊線a,b是否互相平行,我們可以采用將紙條沿AB折疊的方式來進(jìn)行探究.(1)如圖1,展開后,測得,則可判定a//b,請(qǐng)寫出判定的依據(jù)_________;(2)如圖2,若要使a//b,則與應(yīng)該滿足的關(guān)系是_________;(3)如圖3,紙帶兩條邊線a,b互相平行,折疊后的邊線b與a交于點(diǎn)C,若將紙帶沿(,分別在邊線a,b上)再次折疊,折疊后的邊線b與a交于點(diǎn),AB//,,求出的長.解析:(1)內(nèi)錯(cuò)角相等,兩直線平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根據(jù)平行線的判定定理,即可得到答案;(2)由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,結(jié)合三角形內(nèi)角和定理,即可得到答案;(3)分兩種情況:①當(dāng)B1在B的左側(cè)時(shí),如圖2,當(dāng)B1在B的右側(cè)時(shí),如圖3,分別求出的長,即可得到答案.【詳解】(1)∵,∴a∥b(內(nèi)錯(cuò)角相等,兩直線平行),故答案是:內(nèi)錯(cuò)角相等,兩直線平行;(2)如圖1,由折疊的性質(zhì)得:∠3=∠4,若a∥b,則∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a∥b,則與應(yīng)該滿足的關(guān)系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①當(dāng)B1在B的左側(cè)時(shí),如圖2,∵AB//,a∥b,∴AA1=BB1=3,∴=AC-AA1=7-3=4;②當(dāng)B1在B的右側(cè)時(shí),如圖3,∵AB//,a∥b,∴AA1=BB1=3,∴=AC+AA1=7+3=10.綜上所述:=4或10.【點(diǎn)睛】本題主要考查平行線的判定和性質(zhì)定理,折疊的性質(zhì)以及三角形的內(nèi)角和定理,掌握“平行線間的平行線段長度相等”是解題的關(guān)鍵.14.已知和都是等腰三角形,,,.(初步感知)(1)特殊情形:如圖①,若點(diǎn),分別在邊,上,則__________.(填>、<或=)(2)發(fā)現(xiàn)證明:如圖②,將圖①中的繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)在外部,點(diǎn)在內(nèi)部時(shí),求證:.(深入研究)(3)如圖③,和都是等邊三角形,點(diǎn),,在同一條直線上,則的度數(shù)為__________;線段,之間的數(shù)量關(guān)系為__________.(4)如圖④,和都是等腰直角三角形,,點(diǎn)、、在同一直線上,為中邊上的高,則的度數(shù)為__________;線段,,之間的數(shù)量關(guān)系為__________.(拓展提升)(5)如圖⑤,和都是等腰直角三角形,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連結(jié)、.當(dāng),時(shí),在旋轉(zhuǎn)過程中,與的面積和的最大值為__________.解析:(1)=;(2)證明見解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)根據(jù)等邊三角形的性質(zhì)和全等三角形的判定定理證明△DAB≌△EAC,根據(jù)全等三角形的性質(zhì)求出結(jié)論;(4)根據(jù)全等三角形的判定和性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論;(5)根據(jù)旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,而在旋轉(zhuǎn)的過程中,△ADC的AC始終保持不變,即可.【詳解】[初步感知](1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為:=,(2)成立.理由:由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如圖③,設(shè)AB,CD交于O,∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM為△ADE中DE邊上的高,∴AM=EM=MD,∴AM+BD=CM;故答案為:90°,AM+BD=CM;【拓展提升】(5)如圖,由旋轉(zhuǎn)可知,在旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,△ADE與△ADC面積的和達(dá)到最大,∴△ADC面積最大,∵在旋轉(zhuǎn)的過程中,AC始終保持不變,∴要△ADC面積最大,∴點(diǎn)D到AC的距離最大,∴DA⊥AC,∴△ADE與△ADC面積的和達(dá)到的最大為2+×AC×AD=5+2=7,故答案為7.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)和全等三角形的性質(zhì)和判定,旋轉(zhuǎn)過程中面積變化分析,解本題的關(guān)鍵是三角形全等的判定.15.在中,,是直線上一點(diǎn),在直線上,且.(1)如圖1,當(dāng)D在上,在延長線上時(shí),求證:;(2)如圖2,當(dāng)為等邊三角形時(shí),是的延長線上一點(diǎn),在上時(shí),作,求證:;(3)在(2)的條件下,的平分線交于點(diǎn),連,過點(diǎn)作于點(diǎn),當(dāng),時(shí),求的長度.解析:(1)見解析;(2)見解析;(3)3【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和外角的性質(zhì)即可得到結(jié)論;(2)過E作EF∥AC交AB于F,根據(jù)已知條件得到△ABC是等邊三角形,推出△BEF是等邊三角形,得到BE=EF,∠BFE=60°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(3)連接AF,證明△ABF≌△CBF,得AF=CF,再證明DH=AH=CF=3.【詳解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等邊三角形,∴∠B=60°,∴△BEF是等邊三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF與△CAD中,,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)連接AF,如圖3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=AF=CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形和直角三角形的性質(zhì),三角形的外角的性質(zhì),等邊三角形的判定和性質(zhì),證明三角形全等是解決問題的關(guān)鍵.二、選擇題16.近年來,國家重視精準(zhǔn)扶貧,收效顯著.據(jù)統(tǒng)計(jì)約有65000000人脫貧,把65000000用科學(xué)記數(shù)法表示,正確的是()A.0.65×108 B.6.5×107 C.6.5×108 D.65×106解析:B【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).詳解:65000000=6.5×107.故選B.點(diǎn)睛:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.17.如果一個(gè)角的補(bǔ)角是130°,那么這個(gè)角的余角的度數(shù)是()A.30° B.40° C.50° D.90°解析:B【解析】【分析】直接利用互補(bǔ)的定義得出這個(gè)角的度數(shù),進(jìn)而利用互余的定義得出答案.【詳解】解:∵一個(gè)角的補(bǔ)角是130,∴這個(gè)角為:50,∴這個(gè)角的余角的度數(shù)是:40.故選:B.【點(diǎn)睛】此題主要考查了余角和補(bǔ)角,正確把握相關(guān)定義是解題關(guān)鍵.18.已知max表示取三個(gè)數(shù)中最大的那個(gè)數(shù),例如:當(dāng)x=9時(shí),max=81.當(dāng)max時(shí),則x的值為()A. B. C. D.解析:C【解析】【分析】利用max的定義分情況討論即可求解.【詳解】解:當(dāng)max時(shí),x≥0①=,解得:x=,此時(shí)>x>x2,符合題意;②x2=,解得:x=;此時(shí)>x>x2,不合題意;③x=,>x>x2,不合題意;故只有x=時(shí),max.故選:C.【點(diǎn)睛】此題主要考查了新定義,正確理解題意分類討論是解題關(guān)鍵.19.我國古代《易經(jīng)》一書中記載了一種“結(jié)繩計(jì)數(shù)”的方法,一女子在從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,用來記錄采集到的野果數(shù)量,下列圖示中表示91顆的是()A. B.C. D.解析:B【解析】【分析】由于從右到左依次排列的繩子上打結(jié),滿六進(jìn)一,所以從右到左的數(shù)分別進(jìn)行計(jì)算,然后把它們相加即可得出正確答案.【詳解】解:A、5+3×6+1×6×6=59(顆),故本選項(xiàng)錯(cuò)誤;B、1+3×6+2×6×6=91(顆),故本選項(xiàng)正確;C、2+3×6+1×6×6=56(顆),故本選項(xiàng)錯(cuò)誤;D、1+2×6+3×6×6=121(顆),故本選項(xiàng)錯(cuò)誤;故選:B.【點(diǎn)睛】本題是以古代“結(jié)繩計(jì)數(shù)”為背景,按滿六進(jìn)一計(jì)數(shù),運(yùn)用了類比的方法,根據(jù)圖中的數(shù)學(xué)列式計(jì)算;本題題型新穎,一方面讓學(xué)生了解了古代的數(shù)學(xué)知識(shí),另一方面也考查了學(xué)生的思維能力.20.當(dāng)x取2時(shí),代數(shù)式的值是()A.0 B.1 C.2 D.3解析:B【解析】【分析】把x等于2代入代數(shù)式即可得出答案.【詳解】解:根據(jù)題意可得:把代入中得:,故答案為:B.【點(diǎn)睛】本題考查的是代入求值問題,解題關(guān)鍵就是把x的值代入進(jìn)去即可.21.已知線段AB的長為4,點(diǎn)C為AB的中點(diǎn),則線段AC的長為()A.1 B.2 C.3 D.4解析:B【解析】【分析】根據(jù)線段中點(diǎn)的性質(zhì),可得AC的長.【詳解】解:由線段中點(diǎn)的性質(zhì),得AC=AB=2.故選B.【點(diǎn)睛】本題考查了兩點(diǎn)間的距離,利用了線段中點(diǎn)的性質(zhì).22.下列四個(gè)式子:,,,,化簡后結(jié)果為的是()A. B. C. D.解析:B【解析】【分析】由題意直接利用求平方根和立方根以及絕對(duì)值的性質(zhì)和去括號(hào)分別化簡得出答案.【詳解】解:A.=3,故排除A;B.=,選項(xiàng)B正確;C.=3,故排除C;D.=3,故排除D.故選B.【點(diǎn)睛】本題主要考查求平方根和立方根以及絕對(duì)值的性質(zhì)和去括號(hào)原則,正確掌握相關(guān)運(yùn)算法則是解題關(guān)鍵.23.某地冬季某天的天氣預(yù)報(bào)顯示氣溫為﹣1℃至8℃,則該日的最高與最低氣溫的溫差為()A.﹣9℃ B.7℃ C.﹣7℃ D.9℃解析:D【解析】【分析】這天的溫差就是最高氣溫與最低氣溫的差,列式計(jì)算.【詳解】解:該日的最高與最低氣溫的溫差為8﹣(﹣1)=8+1=9(℃),故選:D.【點(diǎn)睛】本題主要考查有理數(shù)的減法法則:減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù),這是需要熟記的內(nèi)容.24.一項(xiàng)工程,甲獨(dú)做需10天完成,乙單獨(dú)做需15天完成,兩人合作4天后,剩下的部分由乙獨(dú)做全部完成,設(shè)乙獨(dú)做x天,由題意得方程()A.+=1 B.+=1 C.+=1 D.+=1解析:B【解析】【分析】直接利用總工作量為1,分別表示出兩人完成的工作量進(jìn)而得出方程即可.【詳解】設(shè)乙獨(dú)做x天,由題意得方程:+=1.故選B.【點(diǎn)睛】本題主要考查了由實(shí)際問題抽象出一元一次方程,正確表示出兩人完成的工作量是解題的關(guān)鍵.25.觀察下列圖形,第一個(gè)圖2條直線相交最多有1個(gè)交點(diǎn),第二個(gè)圖3條直線相交最多有3個(gè)交點(diǎn),第三個(gè)圖4條直線相交最多有6個(gè)交點(diǎn),…,像這樣,則20條直線相交最多交點(diǎn)的個(gè)數(shù)是()A.171 B.190 C.210 D.380解析:B【解析】分析:由于第一個(gè)圖2條直線相交,最多有1個(gè)交點(diǎn),第二個(gè)圖3條直線相交最多有3個(gè)交點(diǎn),第三個(gè)圖4條直線相交,最多有6個(gè),由此得到3=1+2,6=1+2+3,那么第四個(gè)圖5條直線相交,最多有1+2+3+4=10個(gè),以此類推即可求解.詳解:∵第一個(gè)圖2條直線相交,最多有1個(gè)交點(diǎn),

第二個(gè)圖3條直線相交最多有3個(gè)交點(diǎn),

第三個(gè)圖4條直線相交,最多有6個(gè),

而3=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論