版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆河南省名校聯(lián)盟數(shù)學(xué)高二第一學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若數(shù)列滿足,,則該數(shù)列的前2021項(xiàng)的乘積是()A. B.C.2 D.12.已知橢圓與圓在第二象限的交點(diǎn)是點(diǎn),是橢圓的左焦點(diǎn),為坐標(biāo)原點(diǎn),到直線的距離是,則橢圓的離心率是()A. B.C. D.3.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)M是雙曲線右支上一點(diǎn),,且,則雙曲線的離心率為()A. B.C. D.4.已知向量,,,若,則實(shí)數(shù)()A. B.C. D.5.已知A(-1,1,2),B(1,0,-1),設(shè)D在直線AB上,且,設(shè)C(λ,+λ,1+λ),若CD⊥AB,則λ的值為()A. B.-C. D.6.已知數(shù)列的前項(xiàng)和,且,則()A. B.C. D.7.過(guò)點(diǎn)(-2,1)的直線中,被圓x2+y2-2x+4y=0截得的弦最長(zhǎng)的直線的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=08.若正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.9.空間直角坐標(biāo)系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.10.如圖①所示,將一邊長(zhǎng)為1的正方形沿對(duì)角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.11.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.112.已知直線與直線垂直,則()A. B.C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.以點(diǎn)為圓心,且與直線相切的圓的方程是__________14.如圖是一個(gè)邊長(zhǎng)為2的正方體的平面展開(kāi)圖,在這個(gè)正方體中,則下列說(shuō)法中正確的序號(hào)是___________.①直線與直線垂直;②直線與直線相交;③直線與直線平行;④直線與直線異面;15.如圖,某建筑物的高度,一架無(wú)人機(jī)上的儀器觀測(cè)到建筑物頂部的仰角為,地面某處的俯角為,且,則此無(wú)人機(jī)距離地面的高度為_(kāi)_______16.如圖,在四面體中,BA,BC,BD兩兩垂直,,,則二面角的大小為_(kāi)_____三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在半徑為6m的圓形O為圓心鋁皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A,C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個(gè)以AB為母線的圓柱形罐子的側(cè)面不計(jì)剪裁和拼接損耗,設(shè)矩形的邊長(zhǎng)|AB|xm,圓柱的體積為Vm3.(1)寫出體積V關(guān)于x的函數(shù)關(guān)系式,并指出定義域;(2)當(dāng)x為何值時(shí),才能使做出的圓柱形罐子的體積V最大最大體積是多少?18.(12分)已知拋物線的焦點(diǎn)為,拋物線上的點(diǎn)的橫坐標(biāo)為1,且.(1)求拋物線的方程;(2)過(guò)焦點(diǎn)作兩條相互垂直的直線(斜率均存在),分別與拋物線交于、和、四點(diǎn),求四邊形面積的最小值.19.(12分)已知函數(shù).(1)求曲線在處的切線方程;(2)求曲線過(guò)點(diǎn)的切線方程.20.(12分)已知函數(shù).(1)求的單調(diào)遞減區(qū)間;(2)在銳角中,,,分別為角,,的對(duì)邊,且滿足,求的取值范圍.21.(12分)如圖①,在梯形PABC中,,與均為等腰直角三角形,,,D,E分別為PA,PC的中點(diǎn).將沿DE折起,使點(diǎn)P到點(diǎn)的位置(如圖②),G為線段的中點(diǎn).在圖②中解決以下兩個(gè)問(wèn)題.(1)求證:平面平面;(2)若二面角為120°時(shí),求CG與平面所成角的正弦值.22.(10分)為弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,鼓勵(lì)全民閱讀經(jīng)典書(shū)籍,某市舉行閱讀月活動(dòng),現(xiàn)統(tǒng)計(jì)某街道約10000人在該活動(dòng)月每人每日平均閱讀時(shí)間(分鐘)的頻率分布直方圖如圖:(1)求x的值;(2)從該街道任選1人,則估計(jì)這個(gè)人的每日平均閱讀時(shí)間超過(guò)60分鐘的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先由數(shù)列滿足,,計(jì)算出前5項(xiàng),可得,且,再利用周期性即可得到答案.【詳解】因?yàn)閿?shù)列滿足,,所以,同理可得,…所以數(shù)列每四項(xiàng)重復(fù)出現(xiàn),即,且,而,所以該數(shù)列的前2021項(xiàng)的乘積是.故選:C.2、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因?yàn)閳A,可得,過(guò)點(diǎn)作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側(cè)同除,可得,解得或,又因?yàn)椋詸E圓的離心率為.故選:B【點(diǎn)睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結(jié)合直角三角形的勾股定理,列出關(guān)于的方程是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.3、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因?yàn)椋栽谥?,邊上的中線等于的一半,所以.因?yàn)?,所以可設(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A4、C【解析】先根據(jù)題意求出,然后再根據(jù)得出,最后通過(guò)計(jì)算得出結(jié)果.【詳解】因?yàn)?,,所以,又,,所以,即,解?故選:.【點(diǎn)睛】本題主要考查向量數(shù)量積的坐標(biāo)運(yùn)算及向量垂直的相關(guān)性質(zhì),熟記運(yùn)算法則即可,屬于??碱}型.5、B【解析】設(shè)D(x,y,z),根據(jù)求出D(,,0),再根據(jù)CD⊥AB得·=2(-λ)+λ-3(-1-λ)=0,解方程即得λ的值.【詳解】設(shè)D(x,y,z),則=(x+1,y-1,z-2),=(2,-1,-3),=(1-x,-y,-1-z),∵=2,∴∴∴D(,,0),=(-λ,-λ,-1-λ),∵⊥,∴·=2(-λ)+λ-3(-1-λ)=0,∴λ=-故選:B【點(diǎn)睛】(1)本題主要考查向量的線性運(yùn)算和空間向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2).6、C【解析】由an=Sn-Sn-1,【詳解】解:因?yàn)?,所以,,兩式相減可得,即,因?yàn)?,,所以,即,時(shí),也滿足上式,所以,所以,故選:C.7、A【解析】當(dāng)直線被圓截得的最弦長(zhǎng)最大時(shí),直線要經(jīng)過(guò)圓心,即圓心在直線上,然后根據(jù)兩點(diǎn)式方程可得所求【詳解】由題意得,圓的方程為,∴圓心坐標(biāo)為∵直線被圓截得的弦長(zhǎng)最大,∴直線過(guò)圓心,又直線過(guò)點(diǎn)(-2,1),所以所求直線的方程為,即故選:A8、B【解析】先證明點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標(biāo)系,利用向量法求解.【詳解】因?yàn)槠矫嫫矫妫訟1C1//平面ACD1,則點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標(biāo)系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因?yàn)槠矫?,所以平面,所以是平面一個(gè)法向量,所以平面ACD1的一個(gè)法向量為=(1,1,1),故所求的距離為.故選:B【點(diǎn)睛】方法點(diǎn)睛:求點(diǎn)到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.9、A【解析】由已知得,,,設(shè)向量與向量、都垂直,由向量垂直的坐標(biāo)運(yùn)算可求得,再由平面平行和距離公式計(jì)算可得選項(xiàng).【詳解】解:由已知得,,,設(shè)向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.10、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點(diǎn)在面上的投影為的中點(diǎn),由俯視圖可以看出C點(diǎn)在面上的投影為的中點(diǎn),所以其左視圖為如圖所示的等腰直角三角形,直角邊長(zhǎng)為,于是左視圖的面積為故選:A.11、C【解析】作出可行域,把變形為,平移直線過(guò)點(diǎn)時(shí),最大.【詳解】作出可行域如圖:由得:,作出直線,平移直線過(guò)點(diǎn)時(shí),.故選C.【點(diǎn)睛】本題主要考查了簡(jiǎn)單線性規(guī)劃問(wèn)題,屬于中檔題.12、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、;【解析】根據(jù)相切可得圓心到直線距離即為圓的半徑,利用點(diǎn)到直線距離公式解出半徑,即可得到圓的方程【詳解】由題,設(shè)圓心到直線的距離為,所以,因?yàn)閳A與直線相切,則,所以圓的方程為,故答案為:【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,考查點(diǎn)到直線距離公式的應(yīng)用14、①④【解析】畫出正方體,,,故,①正確,根據(jù)相交推出矛盾得到②錯(cuò)誤,根據(jù),與相交得到③錯(cuò)誤,排除共面的情況得到④正確,得到答案.【詳解】如圖所示的正方體中,,,故,①正確;若直線與直線相交,則四點(diǎn)共面,即在平面內(nèi),不成立,②錯(cuò)誤;,與相交,故直線與直線不平行,③錯(cuò)誤;,與不平行,故與不平行,若與相交,則四點(diǎn)共面,在平面內(nèi),不成立,故直線與直線異面,④正確;故答案為:①④.15、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【詳解】根據(jù)題意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案為200【點(diǎn)睛】本題考查了解三角形的應(yīng)用問(wèn)題,考查正弦定理,三角形內(nèi)角和問(wèn)題,考查轉(zhuǎn)化化歸能力,是基礎(chǔ)題16、【解析】取的中點(diǎn)為,連接,由面面角的定義得出二面角的平面角為,再結(jié)合等腰直角三角形的性質(zhì)得出二面角的大小.【詳解】取的中點(diǎn)為,連接,因?yàn)椋远娼堑钠矫娼菫?,因?yàn)?,,所以為等腰直角三角形,即二面角的大小?故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)時(shí),最大值為m3.【解析】(1)連接,在中,由,利用勾股定理可得,設(shè)圓柱底面半徑為,求出.利用(其中即可得出;(2)利用導(dǎo)數(shù),求出V的單調(diào)性,即可得出結(jié)論【小問(wèn)1詳解】連接,在中,,,設(shè)圓柱底面半徑為,則,即,,其中【小問(wèn)2詳解】由及,得,列表如下:,0↗極大值↘∴當(dāng)時(shí),有極大值,也是最大值為m318、(1)(2)2【解析】(1)根據(jù)拋物線的定義求出,即可得到拋物線方程;(2)設(shè)直線的方程為:,、,則直線的方程為:,聯(lián)立直線與拋物線方程,消元、列出韋達(dá)定理,再根據(jù)弦長(zhǎng)公式表示出,同理可得,則四邊形的面積,最后利用基本不等式計(jì)算可得;【小問(wèn)1詳解】解:由已知知:,解得,故拋物線的方程為:.【小問(wèn)2詳解】解:由(1)知:,設(shè)直線方程為:,、,則直線的方程為:,聯(lián)立得,則,所以,,∴,同理可得,∴四邊形的面積,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,∴四邊形面積的最小值為2.19、(1);(2).【解析】(1)首先求導(dǎo)函數(shù),計(jì)算,接著根據(jù)導(dǎo)數(shù)的幾何意義確定切線的斜率,最后根據(jù)點(diǎn)斜式寫出直線方程即可;(2)因?yàn)辄c(diǎn)不在曲線上,所以設(shè)切點(diǎn)為,根據(jù)導(dǎo)數(shù)的幾何意義寫出切線的方程,代入點(diǎn)求解,最后寫出切線方程即可.【詳解】(1).,.所以曲線在處的切線方程為,即(2)設(shè)切點(diǎn)為,則曲線在點(diǎn)處的切線方程為,代入點(diǎn)得,,.所以曲線過(guò)點(diǎn)的切線方程為,即.20、(1)(2)【解析】(1)根據(jù)降冪公式化簡(jiǎn)的解析式,再用整體代入法即可求出函數(shù)的單調(diào)遞減區(qū)間;(2)由正弦定理邊化角,從而可求得,根據(jù)銳角三角形可得從而可求出答案【詳解】解:(1),由得所以的單調(diào)遞減區(qū)間為;(2)由正弦定理得,∵∴,即,,得,或,解得,或(舍),∵為銳角三角形,∴解得∴∴的取值范圍為【點(diǎn)睛】本題主要考查三角函數(shù)的化簡(jiǎn)與性質(zhì),考查正弦定理的作用,屬于基礎(chǔ)題21、(1)證明見(jiàn)解析(2)【解析】(1)通過(guò)兩個(gè)線面平行即可證明面面平行(2)以為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,通過(guò)空間向量的方法計(jì)算線面角的正弦值【小問(wèn)1詳解】如上圖所示,在中,因?yàn)镈,E分別為PA,PC的中點(diǎn),所以,因?yàn)槠矫?,平面,所以平面,連接,交于點(diǎn),連接,因?yàn)榕c均為等腰直角三角形,,所以,,所以,且,則四邊形是平行四邊形,所以是
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年大三(會(huì)計(jì)學(xué))財(cái)務(wù)管理學(xué)試題
- 2025年大學(xué)本科三年級(jí)(電影學(xué))電影史論基礎(chǔ)測(cè)試題及答案
- 2025年高職計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)(網(wǎng)絡(luò)安全)試題及答案
- 2025年高職中醫(yī)學(xué)(中醫(yī)針灸)試題及答案
- 2025年中職安全工程技術(shù)(安全工程應(yīng)用)模擬試題
- 2025年高職第二學(xué)年(軟件技術(shù))Web前端開(kāi)發(fā)測(cè)試題及答案
- 2025年大學(xué)(旅游管理)旅游經(jīng)濟(jì)學(xué)原理階段測(cè)試題及評(píng)分標(biāo)準(zhǔn)
- 2026年藥學(xué)(藥物研發(fā))專項(xiàng)測(cè)試題及答案
- 2025年大學(xué)舞蹈教學(xué)(舞蹈教學(xué)方法)試題及答案
- 印后制作員風(fēng)險(xiǎn)評(píng)估評(píng)優(yōu)考核試卷含答案
- 2026年包頭輕工職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試參考題庫(kù)及答案詳解
- 2026貴州黔南州長(zhǎng)順縣醫(yī)療集團(tuán)中心醫(yī)院招聘?jìng)浒妇幹迫藛T21人筆試參考題庫(kù)及答案解析
- 中國(guó)兒童原發(fā)性免疫性血小板減少癥診斷與治療改編指南(2025版)
- 2026年遼寧生態(tài)工程職業(yè)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫(kù)附答案詳解
- 基坑回填質(zhì)量控制措施
- 2025重慶城口縣國(guó)有企業(yè)公開(kāi)招聘26人參考題庫(kù)附答案
- 應(yīng)力性骨折課件
- 醫(yī)?;鸨O(jiān)管培訓(xùn)課件
- 新型醫(yī)療器械應(yīng)用評(píng)估報(bào)告
- 淺析幼小銜接中大班幼兒時(shí)間觀念的培養(yǎng)對(duì)策 論文
- LY/T 1821-2009林業(yè)地圖圖式
評(píng)論
0/150
提交評(píng)論