版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆山東省濟南市第一中學數(shù)學高二第一學期期末教學質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,若、、三個向量共面,則實數(shù)A3 B.5C.7 D.92.正方體的棱長為2,E,F(xiàn),G分別為,AB,的中點,則直線ED與FG所成角的余弦值為()A. B.C. D.3.在直三棱柱中,側(cè)面是邊長為的正方形,,,且,則異面直線與所成的角為()A. B.C. D.4.下列函數(shù)求導運算正確的個數(shù)為()①;②;③;④.A.1 B.2C.3 D.45.設(shè)函數(shù)在定義域內(nèi)可導,的圖像如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.6.如圖,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為A. B.C. D.7.已知拋物線y2=4x的焦點為F,定點,M為拋物線上一點,則|MA|+|MF|的最小值為()A.3 B.4C.5 D.68.若雙曲線經(jīng)過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.109.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個是真命題 D.命題,只有一個是真命題10.①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個數(shù)為()A.0 B.1C.2 D.311.在平面直角坐標系中,直線+的傾斜角是()A. B.C. D.12.人教A版選擇性必修二教材的封面圖案是斐波那契螺旋線,它被譽為自然界最完美的“黃金螺旋”,自然界存在很多斐波那契螺旋線的圖案,例如向日葵、鸚鵡螺等.斐波那契螺旋線的畫法是:以斐波那契數(shù)1,1,2,3,5,8,…為邊長的正方形拼成長方形,然后在每個正方形中畫一個圓心角為90°的圓弧,這些圓弧所連起來的弧線就是斐波那契螺旋線.下圖為該螺旋線在正方形邊長為1,1,2,3,5,8的部分,如圖建立平面直角坐標系(規(guī)定小方格的邊長為1),則接下來的一段圓弧所在圓的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓:的左右焦點分別為,為橢圓上的一點,與橢圓交于.若△的內(nèi)切圓與線段在其中點處相切,與切于,則橢圓的離心率為_______14.設(shè),復數(shù),,若是純虛數(shù),則的虛部為_________.15.設(shè)變量x,y滿足約束條件則的最大值為___________.16.橢圓C:的左、右焦點分別為,,點A在橢圓上,,直線交橢圓于點B,,則橢圓的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,直線與拋物線的準線交于點,為坐標原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積18.(12分)已知定點,動點滿足,設(shè)點的軌跡為.(1)求軌跡的方程;(2)若點分別是圓和軌跡上的點,求兩點間的最大距離.19.(12分)已知函數(shù),且)的圖象經(jīng)過點和
.(1)求實數(shù),的值;(2)若,求數(shù)列前項和
.20.(12分)在二項式的展開式中;(1)若,求常數(shù)項;(2)若第4項的系數(shù)與第7項的系數(shù)比為,求:①二項展開式中的各項的二項式系數(shù)之和;②二項展開式中各項的系數(shù)之和21.(12分)已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內(nèi)的最值.22.(10分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由空間向量共面原理得存在實數(shù),,使得,由此能求出實數(shù)【詳解】解:,,,、、三個向量共面,存在實數(shù),,使得,即有:,解得,,實數(shù)故選:【點睛】本題考查空間向量共面原理的應(yīng)用,屬于基礎(chǔ)題2、B【解析】建立空間直角坐標系,利用空間向量坐標運算即可求解.【詳解】如圖所示建立適當空間直角坐標系,故選:B3、C【解析】分析得出,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得異面直線與所成的角.【詳解】由題意可知,,因為,,則,,因為平面,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則點、、、,,,,因此,異面直線與所成的角為.故選:C.4、A【解析】根據(jù)導數(shù)的運算法則和導數(shù)的基本公式計算后即可判斷【詳解】解:①,故錯誤;②,故正確;③,故錯誤;④,故錯誤.所以求導運算正確的個數(shù)為1.故選:A.5、D【解析】根據(jù)函數(shù)的單調(diào)性得到導數(shù)的正負,從而得到函數(shù)的圖象.【詳解】由函數(shù)的圖象可知,當時,單調(diào)遞增,則,所以A選項和C選項錯誤;當時,先增,再減,然后再增,則先正,再負,然后再正,所以B選項錯誤.故選:D.【點睛】本題主要考查函數(shù)的單調(diào)性和導數(shù)的關(guān)系,意在考查學生對該知識的掌握水平,屬于基礎(chǔ)題.一般地,函數(shù)在某個區(qū)間可導,,則在這個區(qū)間是增函數(shù);函數(shù)在某個區(qū)間可導,,則在這個區(qū)間是減函數(shù).6、D【解析】設(shè)AA1=2AB=2,因為,所以異面直線A1B與AD1所成角,,故選D.7、B【解析】作出圖象,過點M作準線的垂線,垂足為H,結(jié)合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,求解即可【詳解】過點M作準線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉(zhuǎn)化為|MA|+|MH|的最小值,結(jié)合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,其最小值為.故選:B8、A【解析】由已知設(shè)雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經(jīng)過點,且它的兩條漸近線方程是,設(shè)雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A9、D【解析】由命題為真命題,可判斷二者至少有一個為真命題,由為假命題,可判斷二者至少有一個為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個為真命題,為假命題,說明二者至少有一個為假命題,綜合上述,可知命題,只有一個是真命題,故選:D10、B【解析】寫出逆命題判斷①;寫出逆否命題判斷②;寫出否命題判斷③.【詳解】①:“若,則互為相反數(shù)”的逆命題為:“若互為相反數(shù),則”,是真命題;②:“若,則”的逆否命題為:“若,則”.因為當時,有,但不成立.故“若,則”是假命題.③:“若,則”的否命題為:“若,則”.因為當時,有,但是,即不成立.故“若,則”是假命題..故選:B11、B【解析】由直線方程得斜率,從而得傾斜角【詳解】由直線方程知直角斜率為,在上正切值為1的角為,即為傾斜角故選:B12、C【解析】由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由于每一個圓弧為四分之一圓,從而可求出下一段圓弧所以圓的圓心,進而可得其方程【詳解】解:由題意可知圖中每90°的圓弧半徑符合斐波那契數(shù)1,1,2,3,5,8,…,從而可求出下一段圓弧的半徑為13,由題意可知下一段圓弧過點,因為每一段圓弧的圓心角都為90°,所以下一段圓弧所在圓的圓心與點的連線平行于軸,因為下一段圓弧半徑為13,所以所求圓的圓心為,所以所求圓的方程為,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用橢圓及三角形內(nèi)切圓的性質(zhì)可得、,結(jié)合等邊三角形的性質(zhì)得的大小,在△中應(yīng)用余弦定理得到a、c的齊次式,即可求離心率.【詳解】由題意知:由內(nèi)切圓的性質(zhì)得:,由橢圓的性質(zhì),而,∴,∴由內(nèi)切圓的性質(zhì)得:再由橢圓的性質(zhì),得:,由此,△為等邊三角形,可得,在△中,由余弦定理得:,解得,則,故答案為:.14、【解析】由復數(shù)除法的運算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復數(shù)及虛部的定義即可求解.【詳解】解:因為復數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.15、【解析】根據(jù)線性約束條件畫出可行域,把目標函數(shù)轉(zhuǎn)化為,然后根據(jù)直線在軸上截距最大時即可求出答案.【詳解】畫出可行域,如圖,由,得,由圖可知,當直線過點時,有最大值,且最大值為.故答案為:.16、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設(shè)出邊長,找到邊長與之間等量關(guān)系,然后把等量關(guān)系帶入到勾股定理表達的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設(shè),則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意建立關(guān)于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達定理整體思想求的長,再求點到直線的距離,進而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設(shè),,則,從而因為直線過拋物線的焦點,所以故的面積為18、(1)(2)【解析】(1)設(shè)動點,根據(jù)條件列出方程,化簡求解即可;(2)設(shè),求出圓心到軌跡上點的距離,配方求最值即可得解.【小問1詳解】設(shè)動點,則,,,又,∴,化簡得,即,∴動點的軌跡E的方程為.【小問2詳解】設(shè),圓心到軌跡E上的點的距離∴當時,,∴.19、(1),(2)【解析】(1)將A、B點坐標代入,計算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結(jié)合等比數(shù)列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,
.【小問2詳解】由(1)得,又,所以,故
.20、(1)60(2)①1024;②1【解析】(1)根據(jù)二項式定理求解(2)根據(jù)二項式定理與條件求解,二項式系數(shù)之和為,系數(shù)和可賦值【小問1詳解】若,則,(,…,9)令∴∴常數(shù)項為.【小問2詳解】,(,…,),解得①②令,得系數(shù)和為21、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先對函數(shù)求導,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,結(jié)合方程的根與系數(shù)關(guān)系可求,(2)由(1)可求,然后結(jié)合導數(shù)可判斷函數(shù)的單調(diào)性,進而可求函數(shù)的最值.【詳解】解:(1)=3ax2+2bx﹣3,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,則,解可得a,b=-1,(2)由(1),易得f(x)在,單調(diào)遞增,在上單調(diào)遞減,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【點睛】本題考查利用極值求函數(shù)的參數(shù),以及利用導數(shù)求函數(shù)的最值問題,屬于中檔題22、(1)證明見解析;(2).【解析】(1)在平面中構(gòu)造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標原點建立空間直角坐標系,分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓講師資料管理制度
- 其他人員安全培訓制度
- 一線員工在職培訓制度
- 幼兒園園本培訓制度
- 煤礦培訓工序管理制度
- 婦產(chǎn)科在職培訓制度
- 培訓收費合規(guī)管理制度
- 培訓講師教室管理制度及流程
- EHS培訓教育制度
- 打假辦年度學法培訓制度
- 教科版科學教材培訓
- 甲狀腺的中醫(yī)護理
- 商住樓項目總體規(guī)劃方案
- 2022儲能系統(tǒng)在電網(wǎng)中典型應(yīng)用
- 互聯(lián)網(wǎng)+物流平臺項目創(chuàng)辦商業(yè)計劃書(完整版)
- 家庭學校社會協(xié)同育人課件
- IABP主動脈球囊反搏課件
- 基于python-的車牌識別
- 《LTCC生產(chǎn)流程》課件
- 7KW交流交流充電樁說明書
- 喪假國家規(guī)定
評論
0/150
提交評論