懷化市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試試題_第1頁(yè)
懷化市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試試題_第2頁(yè)
懷化市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試試題_第3頁(yè)
懷化市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試試題_第4頁(yè)
懷化市七年級(jí)數(shù)學(xué)下冊(cè)期末壓軸題考試試題_第5頁(yè)
已閱讀5頁(yè),還剩39頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

一、解答題1.如圖1,點(diǎn)是第二象限內(nèi)一點(diǎn),軸于,且是軸正半軸上一點(diǎn),是x軸負(fù)半軸上一點(diǎn),且.(1)(),()(2)如圖2,設(shè)為線段上一動(dòng)點(diǎn),當(dāng)時(shí),的角平分線與的角平分線的反向延長(zhǎng)線交于點(diǎn),求的度數(shù):(注:三角形三個(gè)內(nèi)角的和為)(3)如圖3,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),作交于的平分線交于,當(dāng)點(diǎn)在運(yùn)動(dòng)的過程中,的大小是否變化?若不變,求出其值;若變化,請(qǐng)說明理由.2.已知AB∥CD,線段EF分別與AB,CD相交于點(diǎn)E,F(xiàn).(1)請(qǐng)?jiān)跈M線上填上合適的內(nèi)容,完成下面的解答:如圖1,當(dāng)點(diǎn)P在線段EF上時(shí),已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點(diǎn)P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當(dāng)點(diǎn)P,Q在線段EF上移動(dòng)時(shí)(不包括E,F(xiàn)兩點(diǎn)):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請(qǐng)說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請(qǐng)直接寫出∠M,∠A與∠C的數(shù)量關(guān)系.3.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請(qǐng)說明理由,若不變化,求出么的度數(shù).4.如圖1,把一塊含30°的直角三角板ABC的BC邊放置于長(zhǎng)方形直尺DEFG的EF邊上.(1)根據(jù)圖1填空:∠1=°,∠2=°;(2)現(xiàn)把三角板繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)n°.①如圖2,當(dāng)n=25°,且點(diǎn)C恰好落在DG邊上時(shí),求∠1、∠2的度數(shù);②當(dāng)0°<n<180°時(shí),是否會(huì)存在三角板某一邊所在的直線與直尺(有四條邊)某一邊所在的直線垂直?如果存在,請(qǐng)直接寫出所有n的值和對(duì)應(yīng)的那兩條垂線;如果不存在,請(qǐng)說明理由.5.如圖,,直線與、分別交于點(diǎn)、,點(diǎn)在直線上,過點(diǎn)作,垂足為點(diǎn).(1)如圖1,求證:;(2)若點(diǎn)在線段上(不與、、重合),連接,和的平分線交于點(diǎn)請(qǐng)?jiān)趫D2中補(bǔ)全圖形,猜想并證明與的數(shù)量關(guān)系;6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請(qǐng)證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請(qǐng)直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.7.閱讀理解:計(jì)算×﹣×?xí)r,若把與分別各看著一個(gè)整體,再利用分配律進(jìn)行運(yùn)算,可以大大簡(jiǎn)化難度.過程如下:解:設(shè)為A,為B,則原式=B(1+A)﹣A(1+B)=B+AB﹣A﹣AB=B﹣A=.請(qǐng)用上面方法計(jì)算:①×-×②-.8.據(jù)說,我國(guó)著名數(shù)學(xué)家華羅庚在一次訪問途中,看到飛機(jī)鄰座的乘客閱讀的雜志上有一道智力題:一個(gè)數(shù)32768,它是一個(gè)正數(shù)的立方,希望求它的立方根,華羅庚不假思索給出了答案,鄰座乘客非常驚奇,很想得知其中的奧秘,你知道華羅庚是怎樣準(zhǔn)確計(jì)算出的嗎?請(qǐng)按照下面的問題試一試:(1)由,因?yàn)椋?qǐng)確定是______位數(shù);(2)由32768的個(gè)位上的數(shù)是8,請(qǐng)確定的個(gè)位上的數(shù)是________,劃去32768后面的三位數(shù)768得到32,因?yàn)椋?qǐng)確定的十位上的數(shù)是_____________;(3)已知和分別是兩個(gè)數(shù)的立方,仿照上面的計(jì)算過程,請(qǐng)計(jì)算:;.9.對(duì)任意一個(gè)三位數(shù)n,如果n滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個(gè)數(shù)為“夢(mèng)幻數(shù)”,將一個(gè)“夢(mèng)幻數(shù)”任意兩個(gè)數(shù)位上的數(shù)字對(duì)調(diào)后可以得到三個(gè)不同的新三數(shù),把這三個(gè)新三位數(shù)的和與111的商記為K(n),例如,對(duì)調(diào)百位與十位上的數(shù)字得到213,對(duì)調(diào)百位與個(gè)位上的數(shù)字得到321,對(duì)調(diào)十位與個(gè)位上的數(shù)字得到132,這三個(gè)新三位數(shù)的和為,,所以.(1)計(jì)算:和;(2)若x是“夢(mèng)幻數(shù)”,說明:等于x的各數(shù)位上的數(shù)字之和;(3)若x,y都是“夢(mèng)幻數(shù)”,且,猜想:________,并說明你猜想的正確性.10.[閱讀材料]∵,即,∴,∴的整數(shù)部分為1,∴的小數(shù)部分為[解決問題](1)填空:的小數(shù)部分是__________;(2)已知是的整數(shù)部分,是的小數(shù)部分,求代數(shù)式的平方根為______.11.如圖1,把兩個(gè)邊長(zhǎng)為1的小正方形沿對(duì)角線剪開,所得的4個(gè)直角三角形拼成一個(gè)面積為2的大正方形.由此得到了一種能在數(shù)軸上畫出無理數(shù)對(duì)應(yīng)點(diǎn)的方法.(1)圖2中A、B兩點(diǎn)表示的數(shù)分別為___________,____________;(2)請(qǐng)你參照上面的方法:①把圖3中的長(zhǎng)方形進(jìn)行剪裁,并拼成一個(gè)大正方形.在圖3中畫出裁剪線,并在圖4的正方形網(wǎng)格中畫出拼成的大正方形,該正方形的邊長(zhǎng)___________.(注:小正方形邊長(zhǎng)都為1,拼接不重疊也無空隙)②在①的基礎(chǔ)上,參照?qǐng)D2的畫法,在數(shù)軸上分別用點(diǎn)M、N表示數(shù)a以及.(圖中標(biāo)出必要線段的長(zhǎng))12.若一個(gè)四位數(shù)t的前兩位數(shù)字相同且各位數(shù)字均不為0,則稱這個(gè)數(shù)為“前介數(shù)”;若把這個(gè)數(shù)的個(gè)位數(shù)字放到前三位數(shù)字組成的數(shù)的前面組成一個(gè)新的四位數(shù),則稱這個(gè)新的四位數(shù)為“中介數(shù)”;記一個(gè)“前介數(shù)”t與它的“中介數(shù)”的差為P(t).例如,5536前兩位數(shù)字相同,所以5536為“前介數(shù)”;則6553就為它的“中介數(shù)”,P(5536)=5536﹣6553=-1017.(1)P(2215)=,P(6655)=.(2)求證:任意一個(gè)“前介數(shù)”t,P(t)一定能被9整除.(3)若一個(gè)千位數(shù)字為2的“前介數(shù)”t能被6整除,它的“中介數(shù)”能被2整除,請(qǐng)求出滿足條件的P(t)的最大值.13.如圖,在平面直角坐標(biāo)系中,已知,,,,滿足.平移線段得到線段,使點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),連接,.(1)求,的值,并直接寫出點(diǎn)的坐標(biāo);(2)點(diǎn)在射線(不與點(diǎn),重合)上,連接,.①若三角形的面積是三角形的面積的2倍,求點(diǎn)的坐標(biāo);②設(shè),,.求,,滿足的關(guān)系式.14.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.15.在平面直角坐標(biāo)系中,已知線段,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,如圖1所示.(1)平移線段到線段,使點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為,若點(diǎn)的坐標(biāo)為,求點(diǎn)的坐標(biāo);(2)平移線段到線段,使點(diǎn)在軸的正半軸上,點(diǎn)在第二象限內(nèi)(與對(duì)應(yīng),與對(duì)應(yīng)),連接如圖2所示.若表示△BCD的面積),求點(diǎn)、的坐標(biāo);(3)在(2)的條件下,在軸上是否存在一點(diǎn),使表示△PCD的面積)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.16.閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對(duì)應(yīng)的點(diǎn)之間的距離;例1.解方程,因?yàn)樵跀?shù)軸上到原點(diǎn)的距離為的點(diǎn)對(duì)應(yīng)的數(shù)為,所以方程的解為.例2.解不等式,在數(shù)軸上找出的解(如圖),因?yàn)樵跀?shù)軸上到對(duì)應(yīng)的點(diǎn)的距離等于的點(diǎn)對(duì)應(yīng)的數(shù)為或,所以方程的解為或,因此不等式的解集為或.參考閱讀材料,解答下列問題:(1)方程的解為;(2)解不等式:;(3)解不等式:.17.如圖,在平面直角坐標(biāo)系中,四邊形各頂點(diǎn)的坐標(biāo)分別為,,,,現(xiàn)將四邊形經(jīng)過平移后得到四邊形,點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為.(1)請(qǐng)直接寫點(diǎn)、、的坐標(biāo);(2)求四邊形與四邊形重疊部分的面積;(3)在軸上是否存在一點(diǎn),連接、,使,若存在這樣一點(diǎn),求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.18.如圖,點(diǎn)A(1,n),B(n,1),我們定義:將點(diǎn)A向下平移1個(gè)單位,再向右平移1個(gè)單位,同時(shí)點(diǎn)B向上平移1個(gè)單位,再向左平移1個(gè)單位稱為一次操作,此時(shí)平移后的兩點(diǎn)記為A1,B1,t次操作后兩點(diǎn)記為At,Bt.(1)直接寫出A1,B1,At,Bt的坐標(biāo)(用含n、t的式子表示);(2)以下判斷正確的是.A.經(jīng)過n次操作,點(diǎn)A,點(diǎn)B位置互換B.經(jīng)過(n﹣1)次操作,點(diǎn)A,點(diǎn)B位置互換C.經(jīng)過2n次操作,點(diǎn)A,點(diǎn)B位置互換D.不管幾次操作,點(diǎn)A,點(diǎn)B位置都不可能互換(3)t為何值時(shí),At,B兩點(diǎn)位置距離最近?19.歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項(xiàng)式用記號(hào)f(x)來表示.例如f(x)=x2+3x-5,把x=某數(shù)時(shí)多項(xiàng)式的值用f(某數(shù))來表示.例如x=-1時(shí)多項(xiàng)式x2+3x-5的值記為f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x2-3x+1,分別求出g(-1)和g(-2);(2)已知h(x)=ax3+2x2-ax-6,當(dāng)h()=a,求a的值;(3)已知f(x)=--2(a,b為常數(shù)),當(dāng)k無論為何值,總有f(1)=0,求a,b的值.20.為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時(shí),水費(fèi)按a元/米3收費(fèi);每戶每月用水量超過6米3時(shí),不超過的部分每立方米仍按a元收費(fèi),超過的部分按c元/米3收費(fèi),該市某用戶今年3、4月份的用水量和水費(fèi)如下表所示:月份用水量(m3)收費(fèi)(元)357.54927(1)求a、c的值,并寫出每月用水量不超過6米3和超過6米3時(shí),水費(fèi)與用水量之間的關(guān)系式;(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi).21.某公園的門票價(jià)格如下表所示:某中學(xué)七年級(jí)(1)、(2)兩個(gè)班計(jì)劃去游覽該公園,其中(I)班的人數(shù)較少,不足50人;(2)班人數(shù)略多,有50多人.如果兩個(gè)班都以班為單位分別購(gòu)票,則一共應(yīng)付1172元,如果兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購(gòu)票,則需付1078元.(1)列方程求出兩個(gè)班各有多少學(xué)生;(2)如果兩個(gè)班聯(lián)合起來買票,是否可以買單價(jià)為9元的票?你有什么省錢的方法來幫他們買票呢?請(qǐng)給出最省錢的方案.22.李師傅要給-塊長(zhǎng)9米,寬7米的長(zhǎng)方形地面鋪瓷磚.如圖,現(xiàn)有A和B兩種款式的瓷磚,且A款正方形瓷磚的邊長(zhǎng)與B款長(zhǎng)方形瓷磚的長(zhǎng)相等,B款瓷磚的長(zhǎng)大于寬.已知一塊A款瓷磚和-塊B款瓷磚的價(jià)格和為140元;3塊A款瓷磚價(jià)格和4塊B款瓷磚價(jià)格相等.請(qǐng)回答以下問題:(1)分別求出每款瓷磚的單價(jià).(2)若李師傅買兩種瓷磚共花了1000元,且A款瓷磚的數(shù)量比B款多,則兩種瓷磚各買了多少塊?(3)李師傅打算按如下設(shè)計(jì)圖的規(guī)律進(jìn)行鋪瓷磚.若A款瓷磚的用量比B款瓷磚的2倍少14塊,且恰好鋪滿地面,則B款瓷磚的長(zhǎng)和寬分別為_米(直接寫出答案).23.如圖,正方形ABCD的邊長(zhǎng)是2厘米,E為CD的中點(diǎn),Q為正方形ABCD邊上的一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)Q以每秒1厘米的速度從A出發(fā)沿運(yùn)動(dòng),最終到達(dá)點(diǎn)D,若點(diǎn)Q運(yùn)動(dòng)時(shí)間為秒.(1)當(dāng)時(shí),平方厘米;當(dāng)時(shí),平方厘米;(2)在點(diǎn)Q的運(yùn)動(dòng)路線上,當(dāng)點(diǎn)Q與點(diǎn)E相距的路程不超過厘米時(shí),求的取值范圍;(3)若的面積為平方厘米,直接寫出值.24.對(duì)于實(shí)數(shù)x,若,則符合條件的中最大的正數(shù)為的內(nèi)數(shù),例如:8的內(nèi)數(shù)是5;7的內(nèi)數(shù)是4.(1)1的內(nèi)數(shù)是______,20的內(nèi)數(shù)是______,6的內(nèi)數(shù)是______;(2)若3是x的內(nèi)數(shù),求x的取值范圍;(3)一動(dòng)點(diǎn)從原點(diǎn)出發(fā),以3個(gè)單位/秒的速度按如圖1所示的方向前進(jìn),經(jīng)過秒后,動(dòng)點(diǎn)經(jīng)過的格點(diǎn)(橫,縱坐標(biāo)均為整數(shù)的點(diǎn))中能圍成的最大實(shí)心正方形的格點(diǎn)數(shù)(包括正方形邊界與內(nèi)部的格點(diǎn))為,例如當(dāng)時(shí),,如圖2①……;當(dāng)時(shí),,如圖2②,③;……①用表示的內(nèi)數(shù);②當(dāng)?shù)膬?nèi)數(shù)為9時(shí),符合條件的最大實(shí)心正方形有多少個(gè),在這些實(shí)心正方形的格點(diǎn)中,直接寫出離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo).(若有多點(diǎn)并列最遠(yuǎn),全部寫出)25.在平面直角坐標(biāo)系xOy中.點(diǎn)A,B,P不在同一條直線上.對(duì)于點(diǎn)P和線段AB給出如下定義:過點(diǎn)P向線段AB所在直線作垂線,若垂足Q落在線段AB上,則稱點(diǎn)P為線段AB的內(nèi)垂點(diǎn).若垂足Q滿足|AQ-BQ|最小,則稱點(diǎn)P為線段AB的最佳內(nèi)垂點(diǎn).已知點(diǎn)A(﹣2,1),B(1,1),C(﹣4,3).(1)在點(diǎn)P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點(diǎn)為;(2)點(diǎn)M是線段AB的最佳內(nèi)垂點(diǎn)且到線段AB的距離是2,則點(diǎn)M的坐標(biāo)為;(3)點(diǎn)N在y軸上且為線段AC的內(nèi)垂點(diǎn),則點(diǎn)N的縱坐標(biāo)n的取值范圍是;(4)已知點(diǎn)D(m,0),E(m+4,0),F(xiàn)(2m,3).若線段CF上存在線段DE的最佳內(nèi)垂點(diǎn),求m的取值范圍.26.如圖①,在平直角坐標(biāo)系中,△ABO的三個(gè)頂點(diǎn)為A(a,b),B(﹣a,3b),O(0,0),且滿足|b﹣2|=0,線段AB與y軸交于點(diǎn)C.(1)求出A,B兩點(diǎn)的坐標(biāo);(2)求出△ABO的面積;(3)如圖②,將線段AB平移至B點(diǎn)的對(duì)應(yīng)點(diǎn)落在x軸的正半軸上時(shí),此時(shí)A點(diǎn)的對(duì)應(yīng)點(diǎn)為,記△的面積為S,若24<S<32,求點(diǎn)的橫坐標(biāo)的取值范圍.27.(發(fā)現(xiàn)問題)已知,求的值.方法一:先解方程組,得出,的值,再代入,求出的值.方法二:將①②,求出的值.(提出問題)怎樣才能得到方法二呢?(分析問題)為了得到方法二,可以將①②,可得.令等式左邊,比較系數(shù)可得,求得.(解決問題)(1)請(qǐng)你選擇一種方法,求的值;(2)對(duì)于方程組利用方法二的思路,求的值;(遷移應(yīng)用)(3)已知,求的范圍.28.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別為(1,0)、(-2,0),現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)的對(duì)應(yīng)點(diǎn),連接、、.(1)若在軸上存在點(diǎn),連接,使S△ABM=S□ABDC,求出點(diǎn)的坐標(biāo);(2)若點(diǎn)在線段上運(yùn)動(dòng),連接,求S=S△PCD+S△POB的取值范圍;(3)若在直線上運(yùn)動(dòng),請(qǐng)直接寫出的數(shù)量關(guān)系.29.我區(qū)防汛指揮部在一河道的危險(xiǎn)地帶兩岸各安置一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖1,燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán)燈光射線自順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針旋轉(zhuǎn)至,如此循環(huán).兩燈交叉照射且不間斷巡視.若燈轉(zhuǎn)動(dòng)的速度是度/秒,燈轉(zhuǎn)動(dòng)的速度是度/秒,且,滿足.若這一帶江水兩岸河堤相互平行,即,且.根據(jù)相關(guān)信息,解答下列問題.(1)__________,__________.(2)若燈的光射線先轉(zhuǎn)動(dòng)24秒,燈的光射線才開始轉(zhuǎn)動(dòng),在燈的光射線到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光射線互相平行?(3)如圖2,若兩燈同時(shí)開始轉(zhuǎn)動(dòng)照射,在燈的光射線到達(dá)之前,若兩燈射出的光射線交于點(diǎn),過點(diǎn)作交于點(diǎn),則在轉(zhuǎn)動(dòng)的過程中,與間的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出這兩角間的數(shù)量關(guān)系;若改變,請(qǐng)求出各角的取值范圍.30.對(duì),定義一種新的運(yùn)算,規(guī)定:(其中).(1)若已知,,則_________.(2)已知,.求,的值;(3)在(2)問的基礎(chǔ)上,若關(guān)于正數(shù)的不等式組恰好有2個(gè)整數(shù)解,求的取值范圍.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、解答題1.(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負(fù)數(shù)的和為零,各項(xiàng)分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結(jié)合題意可設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進(jìn)而可得出x=y,再結(jié)合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結(jié)論.【詳解】(1)由,可得和,解得∴A的坐標(biāo)是(-2,0)、B的坐標(biāo)是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設(shè)∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵M(jìn)N平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)計(jì)算出相應(yīng)的線段的長(zhǎng)和判斷線段與坐標(biāo)軸的位置關(guān)系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).2.(1)兩直線平行,內(nèi)錯(cuò)角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質(zhì)即可完成填空;(2)結(jié)合(1)的輔助線方法即可完成證明;(3)結(jié)合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關(guān)系.【詳解】解:過點(diǎn)P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內(nèi)錯(cuò)角相等;因?yàn)锳B∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內(nèi)錯(cuò)角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點(diǎn)P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點(diǎn)P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點(diǎn)睛】考核知識(shí)點(diǎn):平行線的判定和性質(zhì).熟練運(yùn)用平行線性質(zhì)和判定,添加適當(dāng)輔助線是關(guān)鍵.3.(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.【分析】(1)過E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.4.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②見解析【分析】(1)根據(jù)鄰補(bǔ)角的定義和平行線的性質(zhì)解答;(2)①根據(jù)鄰補(bǔ)角的定義求出∠ABE,再根據(jù)兩直線平行,同位角相等可得∠1=∠ABE,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)求出∠BCG,然后根據(jù)周角等于360°計(jì)算即可得到∠2;②結(jié)合圖形,分AB、BC、AC三條邊與直尺垂直討論求解.【詳解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案為:120,90;(2)①如圖2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②當(dāng)n=30°時(shí),∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);當(dāng)n=90°時(shí),∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);當(dāng)n=120°時(shí),∴AB⊥DE(GF).【點(diǎn)睛】本題考查了平行線角的計(jì)算,垂線的定義,主要利用了平行線的性質(zhì),直角三角形的性質(zhì),讀懂題目信息并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.5.(1)證明見解析;(2)補(bǔ)圖見解析;當(dāng)點(diǎn)在上時(shí),;當(dāng)點(diǎn)在上時(shí),.【分析】(1)過點(diǎn)作,根據(jù)平行線的性質(zhì)即可求解;(2)分兩種情況:當(dāng)點(diǎn)在上,當(dāng)點(diǎn)在上,再過點(diǎn)作即可求解.【詳解】(1)證明:如圖,過點(diǎn)作,∴,∵,∴.∴.∵,∴,∴.(2)補(bǔ)全圖形如圖2、圖3,猜想:或.證明:過點(diǎn)作.∴.∵,∴∴,∴.∵平分,∴.如圖3,當(dāng)點(diǎn)在上時(shí),∵平分,∴,∵,∴,即.如圖2,當(dāng)點(diǎn)在上時(shí),∵平分,∴.∴.即.【點(diǎn)睛】本題考查了平行線的基本性質(zhì)、角平分線的基本性質(zhì)及角的運(yùn)算,解題的關(guān)鍵是準(zhǔn)確作出平行線,找出角與角之間的數(shù)量關(guān)系.6.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點(diǎn)E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點(diǎn)E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯(cuò)角相等,兩直線平行).∴AB//CD.(2)過點(diǎn)E作EM∥AB,過點(diǎn)F作FN∥AB,過點(diǎn)G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點(diǎn)M作EF∥AB,過點(diǎn)N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點(diǎn)睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點(diǎn)作AB(或CD)的平行線,把復(fù)雜的圖形化歸為基本圖形.7.(1);(2).【分析】①根據(jù)發(fā)現(xiàn)的規(guī)律得出結(jié)果即可;②根據(jù)發(fā)現(xiàn)的規(guī)律將所求式子變形,約分即可得到結(jié)果.【詳解】(1)設(shè)為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=;(2)設(shè)為A,為B,原式=(1+A)B﹣(1+B)A=B+AB﹣A﹣AB=B﹣A=.【點(diǎn)睛】考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.8.(1)兩;(2)2,3;(3)24,﹣48;【分析】(1)由題意可得,進(jìn)而可得答案;(2)由只有個(gè)位數(shù)是2的數(shù)的立方的個(gè)位數(shù)是8,可確定的個(gè)位上的數(shù),由可得27<32<64,進(jìn)而可確定,于是可確定的十位上的數(shù),進(jìn)而可得答案;(3)仿照(1)(2)兩小題中的方法解答即可.【詳解】解:(1)因?yàn)?,所以,所以是一個(gè)兩位數(shù);故答案為:兩;(2)因?yàn)橹挥袀€(gè)位數(shù)是2的數(shù)的立方的個(gè)位數(shù)是8,所以的個(gè)位上的數(shù)是2,劃去32768后面的三位數(shù)768得到32,因?yàn)椋?7<32<64,所以,所以的十位上的數(shù)是3;故答案為:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是4的數(shù)的立方的個(gè)位數(shù)是4,∴的個(gè)位上的數(shù)是4,劃去13824后面的三位數(shù)824得到13,∵8<13<27,∴20<<30.∴=24;由103=1000,1003=1000000,1000<110592<1000000,∴10<<100,∴是兩位數(shù);∵只有個(gè)位數(shù)是8的數(shù)的立方的個(gè)位數(shù)是2,∴的個(gè)位上的數(shù)是8,劃去110592后面的三位數(shù)592得到110,∵64<110<125,∴40<<50,∴;∴=﹣48.【點(diǎn)睛】本題考查了立方根和立方數(shù)的規(guī)律探求,具有一定的難度,正確理解題意、確定所求的數(shù)的個(gè)位數(shù)字和十位數(shù)字是解題的關(guān)鍵.9.(1);(2)見解析;(3)【分析】(1)根據(jù)的定義,可以直接計(jì)算得出;(2)設(shè),得到新的三個(gè)數(shù)分別是:,這三個(gè)新三位數(shù)的和為,可以得到:;(3)根據(jù)(2)中的結(jié)論,猜想:.【詳解】解:(1)已知,所以新的三個(gè)數(shù)分別是:,這三個(gè)新三位數(shù)的和為,;同樣,所以新的三個(gè)數(shù)分別是:,這三個(gè)新三位數(shù)的和為,.(2)設(shè),得到新的三個(gè)數(shù)分別是:,這三個(gè)新三位數(shù)的和為,可得到:,即等于x的各數(shù)位上的數(shù)字之和.(3)設(shè),由(2)的結(jié)論可以得到:,,,根據(jù)三位數(shù)的特點(diǎn),可知必然有:,,故答案是:.【點(diǎn)睛】此題考查了多位數(shù)的數(shù)字特征,每個(gè)數(shù)字是10以內(nèi)的自然數(shù)且不為0,解題的關(guān)鍵是:結(jié)合新定義,可以計(jì)算出問題的解,注意把握每個(gè)數(shù)字都會(huì)出現(xiàn)一次的特點(diǎn),區(qū)別數(shù)字與多為數(shù)的不同.10.(1);(2)±3.【分析】(1)由于4<7<9,可求的整數(shù)部分,進(jìn)一步得出的小數(shù)部分;(2)先求出的整數(shù)部分和小數(shù)部分,再代入代數(shù)式進(jìn)行計(jì)算即可.【詳解】解:(1)∵4<7<9,∴,即,∴,∴的整數(shù)部分為2,∴的小數(shù)部分為;(2)∵是的整數(shù)部分,是的小數(shù)部分,9<10<16,∴,即,∴,∴的整數(shù)部分為3,的小數(shù)部分為,即有,,∴9的平方根為±3.∴的平方根為±3.【點(diǎn)睛】本題考查了估算無理數(shù)的大小:利用完全平方數(shù)和算術(shù)平方根對(duì)無理數(shù)的大小進(jìn)行估算.11.(1),;(2)①圖見解析,;②見解析【分析】(1)根據(jù)圖1得到小正方形的對(duì)角線長(zhǎng),即可得出數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)(2)根據(jù)長(zhǎng)方形的面積得正方形的面積,即可得到正方形的邊長(zhǎng),再畫出圖象即可;(3)從原點(diǎn)開始畫一個(gè)長(zhǎng)是2,高是1的長(zhǎng)方形,對(duì)角線長(zhǎng)即是a,再用圓規(guī)以這個(gè)長(zhǎng)度畫弧,交數(shù)軸于點(diǎn)M,再把這個(gè)長(zhǎng)方形向左平移3個(gè)單位,用同樣的方法得到點(diǎn)N.【詳解】(1)由圖1知,小正方形的對(duì)角線長(zhǎng)是,∴圖2中點(diǎn)A表示的數(shù)是,點(diǎn)B表示的數(shù)是,故答案是:,;(2)①長(zhǎng)方形的面積是5,拼成的正方形的面積也應(yīng)該是5,∴正方形的邊長(zhǎng)是,如圖所示:故答案是:;②如圖所示:【點(diǎn)睛】本題考查無理數(shù)的表示方法,解題的關(guān)鍵是理解題意,模仿題目中給出的解題方法進(jìn)行求解.12.(1)-3006,990;(2)見解析;(3)P(t)的最大值是P(2262)=36.【分析】(1)根據(jù)“前介數(shù)”t與它的“中介數(shù)”的差為P(t)的定義求解即可;(2)設(shè)“前介數(shù)”為且a、b、c均不為0的整數(shù),即1a、b、c,根據(jù)定義得到P(t)=,則P(t)一定能被9整除;(3)設(shè)“前介數(shù)”為,根據(jù)題意得到能被3整除,且b只能取2,4,6,8中的其中一個(gè)數(shù);對(duì)應(yīng)的“中介數(shù)”是,得到a只能取2,4,6,8中的其中一個(gè)數(shù),計(jì)算P(t),推出要求P(t)的最大值,即要盡量的大,要盡量的小,再分類討論即可求解.【詳解】(1)解:2215是“前介數(shù)”,其對(duì)應(yīng)的“中介數(shù)”是5221,∴P(2215)=2215-5221=-3006;6655是“前介數(shù)”,其對(duì)應(yīng)的“中介數(shù)”是5665,∴P(6655)=6655-5665=990;故答案為:-3006,990;(2)證明:設(shè)“前介數(shù)”為且a、b、c均為不為0的整數(shù),即1a、b、c,∴,又對(duì)應(yīng)的“中介數(shù)”是,∴P(t)=,∵a、b、c均不為0的整數(shù),∴為整數(shù),∴P(t)一定能被9整除;(3)證明:設(shè)“前介數(shù)”為且即1a、b,a、b均為不為0的整數(shù),∴,∵能被6整除,∴能被2整除,也能被3整除,∴為偶數(shù),且能被3整除,又1,∴b只能取2,4,6,8中的其中一個(gè)數(shù),又對(duì)應(yīng)的“中介數(shù)”是,且該“中介數(shù)”能被2整除,∴為偶數(shù),又1,∴a只能取2,4,6,8中的其中一個(gè)數(shù),∴P(t)=,要求P(t)的最大值,即要盡量的大,要盡量的小,①的最大值為8,的最小值為2,但此時(shí),且14不能被3整除,不符合題意,舍去;②的最大值為6,的最小值仍為2,但此時(shí),能被3整除,且P(t)=2262-2226=36;③的最大值仍為8,的最小值為4,但此時(shí),且16不能被3整除,不符合題意,舍去;其他情況,減少,增大,則P(t)減少,∴滿足條件的P(t)的最大值是P(2262)=36.【點(diǎn)睛】本題考查用新定義解題,根據(jù)新定義,表示出“前介數(shù)”,與其對(duì)應(yīng)的“中介數(shù)”是求解本題的關(guān)鍵.本題中運(yùn)用到的分類討論思想是重要一種數(shù)學(xué)解題思想方法.13.(1);(2)①或;②點(diǎn)在B點(diǎn)左側(cè)時(shí),;點(diǎn)在B點(diǎn)右側(cè)時(shí),.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)分別求出、,根據(jù)平移規(guī)律得到平移方式,再由平移的坐標(biāo)變化規(guī)律求出點(diǎn)的坐標(biāo);(2)①設(shè),根據(jù)三角形的面積公式列出方程,解方程求出,得到點(diǎn)P的坐標(biāo);②分點(diǎn)點(diǎn)在B點(diǎn)左側(cè)、點(diǎn)在B點(diǎn)右側(cè)時(shí),過點(diǎn)P作,根據(jù)平行線的性質(zhì)解答.【詳解】解:(1),,,,解得,,.,,平移線段得到線段,使點(diǎn)與點(diǎn)對(duì)應(yīng),∴平移線段向上平移4個(gè)單位,再向右平移2個(gè)單位得到線段,∴,即;(2)①設(shè),∵線段平移得到線段,∴,∵,∵,∴,∵,∴解得,當(dāng)P在B點(diǎn)左側(cè)時(shí),坐標(biāo)為(1,0),當(dāng)P在B點(diǎn)右側(cè)時(shí),坐標(biāo)為(7,0),或;②I、點(diǎn)在射線(不與點(diǎn),重合)上,點(diǎn)在B點(diǎn)左側(cè)時(shí),,,滿足的關(guān)系式是.理由如下:如圖1,過點(diǎn)作,,∴,由平移得到,點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),,∴∴,;即,II、如圖2,點(diǎn)在射線(不與點(diǎn),重合)上,點(diǎn)在B點(diǎn)右側(cè)時(shí),,,滿足的關(guān)系式是.同①的方法得,,,;即:綜上所述:點(diǎn)在B點(diǎn)左側(cè)時(shí),.點(diǎn)在B點(diǎn)右側(cè)時(shí),.【點(diǎn)睛】本題考查了坐標(biāo)與圖形平移的關(guān)系,坐標(biāo)與平行四邊形性質(zhì)的關(guān)系,平行線的性質(zhì)及三角形、平行四邊形的面積公式.關(guān)鍵是理解平移規(guī)律,作平行線將相關(guān)角進(jìn)行轉(zhuǎn)化.14.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.15.(1);(2);(3)存在點(diǎn),其坐標(biāo)為或.【分析】(1)利用平移得性質(zhì)確定出平移得單位和方向;(2)根據(jù)平移得性質(zhì),設(shè)出平移單位,根據(jù)S△BCD=7(S△BCD建立方程求解,即可);(3)設(shè)出點(diǎn)P的坐標(biāo),表示出PC用,建立方程求解即可.【詳解】(1)∵B(3,0)平移后的對(duì)應(yīng)點(diǎn),∴設(shè),∴即線段向左平移5個(gè)單位,再向上平移4個(gè)單位得到線段∴點(diǎn)平移后的對(duì)應(yīng)點(diǎn);(2)∵點(diǎn)C在軸上,點(diǎn)D在第二象限,∴線段向左平移3個(gè)單位,再向上平移個(gè)單位,∴連接,,∴∴;(3)存在設(shè)點(diǎn),∴∵,∴∴,∴∴存在點(diǎn),其坐標(biāo)為或.【點(diǎn)睛】本題考查了線段平移的性質(zhì),解題的關(guān)鍵在利用平移的性質(zhì),得到點(diǎn)坐標(biāo)的關(guān)系、圖形面積的關(guān)系,根據(jù)面積的關(guān)系,從而求出點(diǎn)的坐標(biāo).16.(1)x=2或x=-8;(2)-1≤x≤5;(3)x>5或x<-3.【分析】(1)利用在數(shù)軸上到-3對(duì)應(yīng)的點(diǎn)的距離等于5的點(diǎn)的對(duì)應(yīng)的數(shù)為2或-8求解即可;(2)先求出的解,再求出的解集即可;(3)先在數(shù)軸上找出的解,即可得出的解集.【詳解】解:(1)∵在數(shù)軸上到-3對(duì)應(yīng)的點(diǎn)的距離等于5的點(diǎn)的對(duì)應(yīng)的數(shù)為2或-8∴方程的解為x=2或x=-8(2)∵在數(shù)軸上到2對(duì)應(yīng)的點(diǎn)的距離等于3的點(diǎn)的對(duì)應(yīng)的數(shù)為-1或5∴方程的解為x=-1或x=5∴的解集為-1≤x≤5.(3)由絕對(duì)值的幾何意義可知,方程就是求在數(shù)軸上到4和-2對(duì)應(yīng)的點(diǎn)的距離之和等于8的點(diǎn)對(duì)應(yīng)的x的值.∵在數(shù)軸上4和-2對(duì)應(yīng)的點(diǎn)的距離是6∴滿足方程的x的點(diǎn)在4的右邊或-2的左邊若x對(duì)應(yīng)的點(diǎn)在4的右邊,可得x=5;若x對(duì)應(yīng)的點(diǎn)在-2的左邊,可得x=-3∴方程的解為x=5或x=-3∴的解集為x>5或x<-3.故答案為(1)x=2或x=-8;(2)-1≤x≤5;(3)x>5或x<-3.【點(diǎn)睛】本題考查了絕對(duì)值及不等式的知識(shí).解題的關(guān)鍵是理解表示在數(shù)軸上數(shù)與數(shù)對(duì)應(yīng)的點(diǎn)之間的距離.17.(1);(2);(3)存在,或【分析】(1)先確定平移的規(guī)則,然后根據(jù)平移的規(guī)則,求出點(diǎn)的坐標(biāo)即可;(2)由平移的性質(zhì)可知,重疊部分為平行四邊形,且底邊長(zhǎng)為3,高為2,即可求出面積;(3)設(shè)點(diǎn)的坐標(biāo)為,先求出平行四邊形ABCD的面積,然后利用三角形的面積公式,即可求出b的值.【詳解】解:(1)∵,,∴平移的規(guī)則為:向右平移2個(gè)單位,向上平移一個(gè)單位;∵,,,∴;(2)如圖,延長(zhǎng)交x軸于點(diǎn)E,過點(diǎn)做由平移可知,重疊部分為平行四邊形,高為2,∴重疊部分的面積為(3)存在;設(shè)點(diǎn)的坐標(biāo)為,∵,,∴,∴點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查了平移的性質(zhì),平行四邊形的性質(zhì),坐標(biāo)與圖形,以及求陰影部分的面積,解題的關(guān)鍵是熟練掌握平移的性質(zhì)進(jìn)行解題.18.(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)B;(3)t=或t=或t=【分析】(1)根據(jù)點(diǎn)在平面直角坐標(biāo)系中的平移規(guī)律求解可得答案;(2)由1+t=n時(shí)t=n﹣1,知n﹣t=n﹣(n﹣1)=1,據(jù)此可得答案;(3)分n為奇數(shù)和偶數(shù)兩種情況,得出對(duì)應(yīng)的方程,解之可得n關(guān)于t的式子.【詳解】解:(1)A1(2,n﹣1),B1(n﹣1,2),At(1+t,n﹣t),Bt(n﹣t,1+t);(2)當(dāng)1+t=n時(shí),t=n﹣1.此時(shí)n﹣t=n﹣(n﹣1)=1,故選:B;(3)當(dāng)n為奇數(shù)時(shí):1+t=n﹣t解得t=,當(dāng)n為偶數(shù)時(shí):1+t=n﹣t+1解得t=,或1+t=n﹣t﹣1解得t=.【點(diǎn)睛】本題主要考查坐標(biāo)與圖形變化—平移,解題的關(guān)鍵是掌握點(diǎn)在平面直角坐標(biāo)系中的平移規(guī)律:橫坐標(biāo),右移加,左移減;縱坐標(biāo),上移加,下移減.19.(1)g(-1)=2g(-2)=-1(2)a=-4(3)a=,b=-4.【解析】【分析】(1)將x=-1和x=-2分別代入可得出答案;(2)將x=代入可得關(guān)于a的一元一次方程,解出即可;(3)由f(1)=0,把x=1代入可得關(guān)于a、b、k的方程,根據(jù)無論k為何值時(shí),都成立就可求出a、b的值.【詳解】(1)由題意得:g(-1)=-2×(-1)2-3×(-1)+1=2;g(-2)=-2×(-2)2-3×(-2)+1=-1;(2)由題意得:,解得:a=-4;(3)∵k無論為何值,總有f(1)=0,∴=0,則當(dāng)k=1、k=0時(shí),可得方程組,解得:.【點(diǎn)睛】本題考查了代數(shù)式求值、解一元一次方程、一元一次方程的解、解二元一次方程組等,讀懂新定義是解題的關(guān)鍵.20.(1);0≤x≤6時(shí),y=1.5x;x>6時(shí),y=6x-27;(2)該戶5月份水費(fèi)是21元.【分析】(1)根據(jù)3、4兩個(gè)月的用水量和相應(yīng)水費(fèi)列方程組求解可得a、c的值;當(dāng)0≤x≤6時(shí),水費(fèi)=用水量×此時(shí)單價(jià);當(dāng)x>6時(shí),水費(fèi)=前6立方水費(fèi)+超出部分水費(fèi),據(jù)此列式即可;(2)x=8代入x>6時(shí)y與x的函數(shù)關(guān)系式求解即可.【詳解】解:(1)根據(jù)題意,得:,解得:;當(dāng)0≤x≤6時(shí),y=1.5x;當(dāng)x>6時(shí),y=1.5×6+6(x-6)=6x-27;(2)當(dāng)x=8時(shí),y=6x-27=6×8-27=21.答:若某戶5月份的用水量為8米3,該戶5月份水費(fèi)是21元.【點(diǎn)睛】本題主要考查利用一次函數(shù)的模型解決實(shí)際問題的能力.要先根據(jù)題意列出函數(shù)關(guān)系式,再代數(shù)求值.解題的關(guān)鍵是要分析題意根據(jù)實(shí)際意義準(zhǔn)確的列出解析式,再把對(duì)應(yīng)值代入求解.21.(1)七(1)班有47人,七(2)班有51人;(2)如果兩個(gè)班聯(lián)合起來買票,不可以買單價(jià)為9元的票,省錢的方法,可以買101張票,多余的作廢即可【解析】【分析】(1)由兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購(gòu)票,則需付1078元可知:可得票價(jià)不是9元,所以兩個(gè)班的總?cè)藬?shù)沒有超過100人,設(shè)七(1)班有x人,七(2)班有y人,可列方程組,解方程組即可得答案;(2)如果兩班聯(lián)合起來作為一個(gè)團(tuán)體購(gòu)票,則每張票11元,省錢的方法,可以買101張票,多余的作廢即可?!驹斀狻拷猓海?)∵兩個(gè)班聯(lián)合起來,作為一個(gè)團(tuán)體購(gòu)票,則需付1078元有∵可得票價(jià)不是9元,所以兩個(gè)班的總?cè)藬?shù)沒有超過100人,∴設(shè)七(1)班有x人,七(2)班有y人,依題意得:∴七(1)班有47人,七(2)班有51人(2)因?yàn)?7+51=98<100∴如果兩個(gè)班聯(lián)合起來買票,不可以買單價(jià)為9元的票∴省錢的方法,可以買101張票,多余的作廢即可??墒。骸军c(diǎn)睛】熟練掌握二元一次方程組的實(shí)際問題是解題的關(guān)鍵。22.(1)A款瓷磚單價(jià)為80元,B款單價(jià)為60元.(2)買了11塊A款瓷磚,2塊B款;或8塊A款瓷磚,6塊B款.(3)B款瓷磚的長(zhǎng)和寬分別為1,或1,.【分析】(1)設(shè)A款瓷磚單價(jià)x元,B款單價(jià)y元,根據(jù)“一塊A款瓷磚和一塊B款瓷磚的價(jià)格和為140元;3塊A款瓷磚價(jià)格和4塊B款瓷磚價(jià)格相等”列出二元一次方程組,求解即可;(2)設(shè)A款買了m塊,B款買了n塊,且m>n,根據(jù)共花1000元列出二元一次方程,求出符合題意的整數(shù)解即可;(3)設(shè)A款正方形瓷磚邊長(zhǎng)為a米,B款長(zhǎng)為a米,寬b米,根據(jù)圖形以及“A款瓷磚的用量比B款瓷磚的2倍少14塊”可列出方程求出a的值,然后由是正整教分情況求出b的值.【詳解】解:(1)設(shè)A款瓷磚單價(jià)x元,B款單價(jià)y元,則有,解得,答:A款瓷磚單價(jià)為80元,B款單價(jià)為60元;(2)設(shè)A款買了m塊,B款買了n塊,且m>n,則80m+60n=1000,即4m+3n=50∵m,n為正整數(shù),且m>n∴m=11時(shí)n=2;m=8時(shí),n=6,答:買了11塊A款瓷磚,2塊B款瓷磚或8塊A款瓷磚,6塊B款瓷磚;(3)設(shè)A款正方形瓷磚邊長(zhǎng)為a米,B款長(zhǎng)為a米,寬b米.由題意得:,解得a=1.由題可知,是正整教.設(shè)(k為正整數(shù)),變形得到,當(dāng)k=1時(shí),,故合去),當(dāng)k=2時(shí),,故舍去),當(dāng)k=3時(shí),,當(dāng)k=4時(shí),,答:B款瓷磚的長(zhǎng)和寬分別為1,或1,.【點(diǎn)睛】本題主要考查了二元一次方程組的實(shí)際應(yīng)用,(1)(2)較為簡(jiǎn)單,(3)中利用數(shù)形結(jié)合的思想,找出其中兩款瓷磚的數(shù)量與圖形之間的規(guī)律是解題的關(guān)鍵.23.(1)1;(2)(3)【分析】(1)根據(jù)三角形的面積公式即可求解;(2)根據(jù)題意列出不等式組故可求解;(3)分Q點(diǎn)在AB上、BC上和CD上分別列出方程即可求解.【詳解】(1)當(dāng)時(shí),=1平方厘米;當(dāng)時(shí),=平方厘米;故答案為;;(2)解:根據(jù)題意,得解得,故的取值范圍為;(3)當(dāng)Q點(diǎn)在AB上時(shí),依題意可得解得;當(dāng)Q點(diǎn)在BC上時(shí),依題意可得解得>6,不符合題意;當(dāng)Q點(diǎn)在AB上時(shí),依題意可得或解得或;∴值為.【點(diǎn)睛】此題主要考查不等式組與一元一次方程的應(yīng)用,解題的關(guān)鍵是根據(jù)題意得到方程或不等式組進(jìn)行求解.24.(1)2,7,4;(2);(3)①t的內(nèi)數(shù);②符合條件的最大實(shí)心正方形有2個(gè),離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo)有兩個(gè),為.【分析】(1)根據(jù)內(nèi)數(shù)的定義即可求解;(2)根據(jù)內(nèi)數(shù)的定義可列不等式,求解即可;(3)①分析可得當(dāng)時(shí),即t的內(nèi)數(shù)為2時(shí),;當(dāng)時(shí),即t的內(nèi)數(shù)為3時(shí),,當(dāng)時(shí),即t的內(nèi)數(shù)為4時(shí),……歸納可得結(jié)論;②分析可得當(dāng)t的內(nèi)數(shù)為奇數(shù)時(shí),最大實(shí)心正方形有2個(gè);當(dāng)t的內(nèi)數(shù)為偶數(shù)時(shí),最大實(shí)心正方形有1個(gè);且最大實(shí)心正方形的邊長(zhǎng)為:的內(nèi)數(shù)-1,即可求解.【詳解】解:(1),所以1的內(nèi)數(shù)是2;,所以20的內(nèi)數(shù)是7;,所以6的內(nèi)數(shù)是4;(2)∵3是x的內(nèi)數(shù),∴,解得;(3)①當(dāng)時(shí),即t的內(nèi)數(shù)為2時(shí),;當(dāng)時(shí),即t的內(nèi)數(shù)為3時(shí),,當(dāng)時(shí),即t的內(nèi)數(shù)為4時(shí),,……∴t的內(nèi)數(shù);②當(dāng)t的內(nèi)數(shù)為2時(shí),最大實(shí)心正方形有1個(gè);當(dāng)t的內(nèi)數(shù)為3時(shí),最大實(shí)心正方形有2個(gè),當(dāng)t的內(nèi)數(shù)為4時(shí),最大實(shí)心正方形有1個(gè),……即當(dāng)t的內(nèi)數(shù)為奇數(shù)時(shí),最大實(shí)心正方形有2個(gè);當(dāng)t的內(nèi)數(shù)為偶數(shù)時(shí),最大實(shí)心正方形有1個(gè);∴當(dāng)?shù)膬?nèi)數(shù)為9時(shí),符合條件的最大實(shí)心正方形有2個(gè),由前幾個(gè)例子推理可得最大實(shí)心正方形的邊長(zhǎng)為:的內(nèi)數(shù)-1,∴此時(shí)最大實(shí)心正方形的邊長(zhǎng)為8,離原點(diǎn)最遠(yuǎn)的格點(diǎn)的坐標(biāo)有兩個(gè),為.【點(diǎn)睛】本題考查圖形類規(guī)律探究,明確題干中內(nèi)數(shù)的定義是解題的關(guān)鍵.25.(1)P3,P4;(2)(-0.5,3)或(-0.5,-1);(3);(4)或【分析】(1)根據(jù)題意分析,即可得到答案;(2)結(jié)合題意,首先求得線段中點(diǎn)C坐標(biāo),再根據(jù)題意分析,即可得到答案;(3)過點(diǎn)A作軸,過點(diǎn)C作軸,交于點(diǎn)D,過點(diǎn)A作,交y軸于點(diǎn),過點(diǎn)C作,交y軸于點(diǎn),根據(jù)三角形和直角坐標(biāo)系的性質(zhì),得;再根據(jù)直角坐標(biāo)系和等腰直角三角形性質(zhì),得,,從而得到答案;(4)根據(jù)題意,得線段中點(diǎn)坐標(biāo);再結(jié)合題意列不等式并求解,即可得到答案.【詳解】(1)根據(jù)題意,點(diǎn)P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,線段AB的內(nèi)垂點(diǎn)為P3(﹣1,﹣2),P4(﹣,4)故答案為:P3,P4;(2)∵A(﹣2,1),B(1,1)∴線段中點(diǎn)C坐標(biāo)為:,即∵點(diǎn)M是線段AB的最佳內(nèi)垂點(diǎn)且到線段AB的距離是2∴當(dāng)或,即當(dāng)或時(shí),|AQ-BQ|=0,為最小值故答案為:(-0.5,3)或(-0.5,-1);(3)如圖,過點(diǎn)A作軸,過點(diǎn)C作軸,交于點(diǎn)D,過點(diǎn)A作,交y軸于點(diǎn),過點(diǎn)C作,交y軸于點(diǎn),∵點(diǎn)A(﹣2,1),C(﹣4,3)∴,,∴∴,,即,∴故答案為:;(4)∵點(diǎn)D(m,0),E(m+4,0)∴線段中點(diǎn)坐標(biāo)為根據(jù)題意,得:當(dāng)時(shí),;當(dāng)時(shí),;∴或.【點(diǎn)睛】本題考查了直角坐標(biāo)系、一元一次不等式知識(shí);解題的關(guān)鍵是熟練掌握直角坐標(biāo)系、一元一次不等式、坐標(biāo)的性質(zhì),從而完成求解.26.(1)A(-3,2),B(3,6);(2)△ABO的面積為12;(3)點(diǎn)的橫坐標(biāo)的取值范圍是.【分析】(1)根據(jù)算術(shù)平方根和絕對(duì)值的非負(fù)性可得a=-3,b=2,進(jìn)而可求得A,B兩點(diǎn)的坐標(biāo);(2)過A作AE⊥x軸,垂足為E,過B作BF⊥x軸,垂足為F,根據(jù)即可求得答案;(3)先根據(jù)可求得點(diǎn)C的坐標(biāo),設(shè)(m,0),根據(jù)平移的性質(zhì)可得(m-6,-4),過點(diǎn)、、分別作坐標(biāo)軸的平行線,交點(diǎn)記為點(diǎn)M、N、H

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論