2026屆湖北省宜昌金東方高級(jí)中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)
2026屆湖北省宜昌金東方高級(jí)中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)
2026屆湖北省宜昌金東方高級(jí)中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)
2026屆湖北省宜昌金東方高級(jí)中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)
2026屆湖北省宜昌金東方高級(jí)中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆湖北省宜昌金東方高級(jí)中學(xué)高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.2.某地為應(yīng)對(duì)極端天氣搶險(xiǎn)救災(zāi),需調(diào)用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時(shí)之需,若x和y滿足約束條件則最多需調(diào)用卡車的數(shù)量為()A.7 B.9C.13 D.143.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.4.已知橢圓上一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離是3,則點(diǎn)到另一個(gè)焦點(diǎn)的距離為()A.9 B.7C.5 D.35.直線在y軸上的截距為()A. B.C. D.6.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x7.某班新學(xué)期開(kāi)學(xué)統(tǒng)計(jì)新冠疫苗接種情況,已知該班有學(xué)生45人,其中未完成疫苗接種的有5人,則該班同學(xué)的疫苗接種完成率為()A. B.C. D.8.設(shè)函數(shù)在上單調(diào)遞減,則實(shí)數(shù)的取值范圍是()A. B.C. D.9.雙曲線型自然通風(fēng)塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.10.曲線在處的切線如圖所示,則()A.0 B.C. D.11.一個(gè)幾何體的三視圖都是半徑為1的圓,在該幾何體內(nèi)放置一個(gè)高度為1的長(zhǎng)方體,則長(zhǎng)方體的體積最大值為()A. B.C. D.112.設(shè)函數(shù)若函數(shù)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的圖像在點(diǎn)處的切線方程是,則=______14.若球的大圓的面積為,則該球的表面積為_(kāi)__________.15.已知數(shù)列滿足:,,,則______16.某校共有學(xué)生480人;現(xiàn)采用分層抽樣的方法從中抽取80人進(jìn)行體能測(cè)試;若這80人中有30人是男生,則該校女生共有___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,已知正方體的棱長(zhǎng)為2,,,分別為,,的中點(diǎn)(1)求直線與直線所成角余弦值;(2)求點(diǎn)到平面的距離18.(12分)已知橢圓與拋物線有一個(gè)相同的焦點(diǎn),且該橢圓的離心率為,(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程:(Ⅱ)求過(guò)點(diǎn)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求的面積.19.(12分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線l交曲線C于M,N兩點(diǎn),若點(diǎn)P為線段MN的中點(diǎn),求直線l的方程20.(12分)已知梯形如圖甲所示,其中,,,四邊形是邊長(zhǎng)為1正方形,沿將四邊形折起,使得平面平面,得到如圖乙所示的幾何體(1)求證:平面;(2)若點(diǎn)在線段上,且與平面所成角的正弦值為,求線段的長(zhǎng)度.21.(12分)已知分別是橢圓的左、右焦點(diǎn),點(diǎn)是橢圓上的一點(diǎn),且的面積為1.(1)求橢圓的短軸長(zhǎng);(2)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)是橢圓上的一點(diǎn),若為等邊三角形,求的取值范圍.22.(10分)已知首項(xiàng)為1的數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【詳解】因?yàn)椋?,所以,,又,即,,所以離心率故選:C2、B【解析】畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】設(shè)調(diào)用卡車的數(shù)量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)時(shí),縱截距最大,最大.故選:B3、A【解析】由焦距為可得,又,進(jìn)而可得,最后根據(jù)焦點(diǎn)在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因?yàn)殡p曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.4、A【解析】根據(jù)橢圓定義求得即可.【詳解】由橢圓定義知,點(diǎn)P到另一個(gè)焦點(diǎn)的距離為2×6-3=9.故選:A5、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D6、D【解析】根據(jù)雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),屬于容易題.7、D【解析】利用古典概型的概率求解.【詳解】該班同學(xué)的疫苗接種完成率為故選:D8、B【解析】分析可知,對(duì)任意的恒成立,由參變量分離法可得出,求出在時(shí)的取值范圍,即可得出實(shí)數(shù)的取值范圍.【詳解】因?yàn)?,則,由題意可知對(duì)任意的恒成立,則對(duì)任意的恒成立,當(dāng)時(shí),,.故選:B.9、A【解析】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè)雙曲線的方程為,設(shè),,代入雙曲線的方程,求得,得到,進(jìn)而求得雙曲線的離心率.【詳解】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,則,設(shè)雙曲線的方程為,則,可設(shè),,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷10、C【解析】由圖示求出直線方程,然后求出,,即可求解.【詳解】由直線經(jīng)過(guò),,可求出直線方程為:∵在處的切線∴,∴故選:C【點(diǎn)睛】用導(dǎo)數(shù)求切線方程常見(jiàn)類型:(1)在出的切線:為切點(diǎn),直接寫(xiě)出切線方程:;(2)過(guò)出的切線:不是切點(diǎn),先設(shè)切點(diǎn),聯(lián)立方程組,求出切點(diǎn)坐標(biāo),再寫(xiě)出切線方程:.11、B【解析】根據(jù)題意得到幾何體為半徑為1的球,長(zhǎng)方體的體對(duì)角線為球的直徑時(shí),長(zhǎng)方體體積最大,設(shè)出長(zhǎng)方體的長(zhǎng)和寬,得到等量關(guān)系,利用基本不等式求解體積最大值.【詳解】由題意得:此幾何體為半徑為1的球,長(zhǎng)方體為球的內(nèi)接長(zhǎng)方體時(shí),體積最大,此時(shí)長(zhǎng)方體的體對(duì)角線為球的直徑,設(shè)長(zhǎng)方體長(zhǎng)為,寬為,則由題意得:,解得:,而長(zhǎng)方體體積為,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故選:B12、D【解析】有兩個(gè)零點(diǎn)等價(jià)于與的圖象有兩個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與最值,畫(huà)出函數(shù)圖象,數(shù)形結(jié)合可得結(jié)果.【詳解】解:設(shè),則,所以在上遞減,在上遞增,,且時(shí),,有兩個(gè)零點(diǎn)等價(jià)于與的圖象有兩個(gè)交點(diǎn),畫(huà)出的圖象,如下圖所示,由圖可得,時(shí),與的圖象有兩個(gè)交點(diǎn),此時(shí),函數(shù)有兩個(gè)零點(diǎn),實(shí)數(shù)m的取值范圍是,故選:D.【點(diǎn)睛】方法點(diǎn)睛:本題主要考查分段函數(shù)的性質(zhì)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的零點(diǎn),以及數(shù)形結(jié)合思想的應(yīng)用,屬于難題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對(duì)應(yīng)關(guān)系,通過(guò)數(shù)與形的相互轉(zhuǎn)化來(lái)解決數(shù)學(xué)問(wèn)題的一種重要思想方法,函數(shù)圖象是函數(shù)的一種表達(dá)形式,它形象地揭示了函數(shù)的性質(zhì),為研究函數(shù)的數(shù)量關(guān)系提供了“形”的直觀性.歸納起來(lái),圖象的應(yīng)用常見(jiàn)的命題探究角度有:1、確定方程根的個(gè)數(shù);2、求參數(shù)的取值范圍;3、求不等式的解集;4、研究函數(shù)性質(zhì)二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)導(dǎo)數(shù)幾何意義,可得的值,根據(jù)點(diǎn)M在切線上,可求得的值,即可得答案.【詳解】由導(dǎo)數(shù)的幾何意義可得,,又在切線上,所以,則=3,故答案為:3【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用,考查分析理解的能力,屬基礎(chǔ)題.14、【解析】設(shè)球的半徑為,則球的大圓的半徑為,根據(jù)圓的面積公式列方程求出,再由球的表面積公式即可求解.【詳解】設(shè)球的半徑為,則球的大圓的半徑為,所以球的大圓的面積為,可得,所以該球的表面積為.故答案為:.15、.【解析】運(yùn)用累和法,結(jié)合等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可.【詳解】因?yàn)?,,所以?dāng)時(shí),有,因此有:,即,當(dāng)時(shí),適合上式,所以,故答案為:.16、人##300【解析】根據(jù)人數(shù)占比直接計(jì)算即可.【詳解】該校女生共有人.故答案為:人.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量法由求解;(1)建立空間直角坐標(biāo)系,先取得平面的一個(gè)法向量,,,然后由求解【小問(wèn)1詳解】解:以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系.則,0,,,2,,,2,,,0,,,0,,,0,,,2,,所以,2,,,2,,則直線與直線所成角的余弦值為;【小問(wèn)2詳解】,2,,,2,,設(shè)平面的一個(gè)法向量,,,則,取,得,1,,又,點(diǎn)到平面的距離18、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根據(jù)題意可以求出橢圓的焦點(diǎn),再根據(jù)橢圓的離心率公式,求出的值,然后結(jié)合橢圓的關(guān)系求出,最后寫(xiě)出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)根據(jù)平面向量共線定理可以得出A,B兩點(diǎn)橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再設(shè)出直線AB方程與橢圓方程聯(lián)立,利用根與系數(shù)關(guān)系求出直線AB的斜率,最后根據(jù)三角形面積結(jié)合根與系數(shù)關(guān)系求出的面積.【詳解】(Ⅰ)由題意,設(shè)橢圓的標(biāo)準(zhǔn)方程為,由題意可得,又,,所以橢圓的標(biāo)準(zhǔn)方程為(Ⅱ)設(shè),,由得:,驗(yàn)證易知直線AB的斜率存在,設(shè)直線AB的方程為聯(lián)立橢圓方程,得:,整理得:,得:,將代入得,所以的面積.【點(diǎn)睛】本題考查了求橢圓的標(biāo)準(zhǔn)方程,考查了利用一元二次方程根與系數(shù)關(guān)系求直線斜率和三角形面積問(wèn)題,考查了數(shù)學(xué)運(yùn)算能力.19、(1);(2).【解析】(1)根據(jù)橢圓的定義即可判斷并求解;(2)根據(jù)點(diǎn)差法即可求解中點(diǎn)弦斜率和中點(diǎn)弦方程.【小問(wèn)1詳解】設(shè),,E(x,y),∵,,且,點(diǎn)的軌跡是以,為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓設(shè)橢圓C的方程為,記,則,,,,,曲線的標(biāo)準(zhǔn)方程為【小問(wèn)2詳解】根據(jù)橢圓對(duì)稱性可知直線l斜率存在,設(shè),則,由①-②得,,∴l(xiāng):,即.20、(1)證明過(guò)程見(jiàn)解析;(2).【解析】(1)根據(jù)面面垂直的性質(zhì)定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式進(jìn)行求解即可.【小問(wèn)1詳解】∵平面平面,平面平面平面,,∴平面;【小問(wèn)2詳解】(2)建系如圖:設(shè)平面的法向量,,,,,,則,設(shè),,,解得或(舍),,∴.21、(1)2(2)【解析】(1)根據(jù)題意表示出的面積,即可求得結(jié)果;(2)分類討論直線斜率情況,然后根據(jù)是等邊三角形,得到,聯(lián)立直線和橢圓方程,用點(diǎn)的坐標(biāo)表示上述關(guān)系式,化簡(jiǎn)即可得答案.【小問(wèn)1詳解】因?yàn)?,所以,又因?yàn)?,所以,,所以,則橢圓的短軸長(zhǎng)為2.【小問(wèn)2詳解】若為等邊三角形,應(yīng)有,即.當(dāng)直線的斜率不存在時(shí),直線的方程為,且,此時(shí)若為等邊三角形,則點(diǎn)應(yīng)為長(zhǎng)軸頂點(diǎn),且,即.當(dāng)直線的斜率為0時(shí),直線的方程為,且,此時(shí)若為等邊二角形,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論