版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
新疆生產(chǎn)建設(shè)兵團第七師中學2026屆高二數(shù)學第一學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列命題中正確的是()A.拋物線的焦點坐標為B.拋物線的準線方程為x=?1C.拋物線的圖象關(guān)于x軸對稱D.拋物線的圖象關(guān)于y軸對稱2.對于函數(shù),下列說法正確的是()A.的單調(diào)減區(qū)間為B.設(shè),若對,使得成立,則C.當時,D.若方程有4個不等的實根,則3.魏晉時期數(shù)學家劉徽首創(chuàng)割圓術(shù),他在《九章算術(shù)》方田章圓田術(shù)中指出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術(shù)是一種無限與有限的轉(zhuǎn)化過程,比如在正數(shù)中的“”代表無限次重復(fù),設(shè),則可以利用方程求得,類似地可得到正數(shù)()A.2 B.3C. D.4.等差數(shù)列的公差為2,若成等比數(shù)列,則()A.72 B.90C.36 D.455.某高中從3名男教師和2名女教師中選出3名教師,派到3個不同的鄉(xiāng)村支教,要求這3名教師中男女都有,則不同的選派方案共有()種A.9 B.36C.54 D.1086.已知且,則的值為()A.3 B.4C.5 D.67.函數(shù)在的最大值是()A. B.C. D.8.已知為拋物線上一點,點P到拋物線C的焦點的距離與它到y(tǒng)軸的距離之比為,則()A.1 B.C.2 D.39.函數(shù)有兩個不同的零點,則實數(shù)的取值范圍是()A. B.C. D.10.中心在原點的雙曲線C的右焦點為,實軸長為2,則雙曲線C的方程為()A. B.C. D.11.已知命題:,;命題:,使,若“”為假命題,則實數(shù)的取值范圍是()A. B.C. D.12.若平面的一個法向量為,點,,,,到平面的距離為()A.1 B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),是其導(dǎo)函數(shù),若曲線的一條切線為直線:,則的最小值為___________.14.已知直線與雙曲線交于兩點,則該雙曲線的離心率的取值范圍是______15.雙曲線的離心率為____16.《九章算術(shù)》是人類科學史上應(yīng)用數(shù)學的最早巔峰,書中有這樣一道題:“今有大夫、不更,簪裹、上造、公士,凡五人,共獵得五只鹿,欲以爵次分之,問各得幾何?”其譯文是“現(xiàn)在有從高到低依次為大夫,不更,簪裹,上造、公士的五個不同爵次的官員,共獵得五只鹿,要按爵次商低分(即根據(jù)爵次高低分配得到的獵物數(shù)依次成等差數(shù)列),向各得多少鹿?”已知上造分得只鹿,則不更所得的鹿數(shù)為_______只三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,點到兩點的距離之和等于4,設(shè)點的軌跡為曲線(1)求曲線的方程;(2)設(shè)直線與交于兩點,為何值時?18.(12分)如圖,在空間四邊形中,分別是的中點,分別是上的點,滿足.(1)求證:四點共面;(2)設(shè)與交于點,求證:三點共線.19.(12分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點,F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點M,使得⊥平面?若存在,求的值;若不存在,說明理由.20.(12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,若x=時,y=f(x)有極值(1)求a,b,c的值;(2)求y=f(x)在區(qū)間[-3,1]上最大值和最小值21.(12分)已知等比數(shù)列的前項和為,,.數(shù)列的前項和為,且,(1)分別求數(shù)列和的通項公式;(2)若,為數(shù)列的前項和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說明理由22.(10分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)拋物線的性質(zhì)逐項分析可得答案.【詳解】拋物線的焦點坐標為,故A錯誤;拋物線的準線方程為,故B錯誤;拋物線的圖象關(guān)于x軸對稱,故C正確,D錯誤;故選:C.2、B【解析】函數(shù),,,,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及極值,畫出圖象A.結(jié)合圖象可判斷出正誤;B.設(shè)函數(shù)的值域為,函數(shù),的值域為.若對,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,由此即可判斷出正誤;D.方程有4個不等的實根,則,且時,有2個不等的實根,由圖象即可判斷出正誤;【詳解】函數(shù),,,,可得函數(shù)在上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,當時,,由此作出函數(shù)的大致圖象,如圖示:A.由上述分析結(jié)合圖象,可得A不正確B.設(shè)函數(shù)的值域為,函數(shù),的值域為,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數(shù)在單調(diào)遞減,可得函數(shù)在單調(diào)遞增,因此當時,,即,因此C不正確;D.方程有4個不等的實根,則,且時,有2個不等的實根,結(jié)合圖象可知,因此D不正確故選:B3、A【解析】設(shè),則,解方程可得結(jié)果.【詳解】設(shè),則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關(guān)鍵點點睛:設(shè)是解題關(guān)鍵.4、B【解析】由題意結(jié)合成等比數(shù)列,有即可得,進而得到、,即可求.【詳解】由題意知:,,又成等比數(shù)列,∴,解之得,∴,則,∴,故選:B【點睛】思路點睛:由其中三項成等比數(shù)列,利用等比中項性質(zhì)求項,進而得到等差數(shù)列的基本量1、由成等比,即;2、等差數(shù)列前n項和公式的應(yīng)用.5、C【解析】根據(jù)給定條件利用排列并結(jié)合排除法列式計算作答.【詳解】從含有3名男教師和2名女教師的5名教師中任選3名教師,派到3個不同的鄉(xiāng)村支教,不同的選派方案有種,選出3名教師全是男教師的不同的選派方案有種,所以3名教師中男女都有的不同的選派方案共有種故選:C6、C【解析】由空間向量數(shù)量積的坐標運算求解【詳解】由已知,解得故選:C7、C【解析】利用函數(shù)單調(diào)性求解.【詳解】解:因為函數(shù)是單調(diào)遞增函數(shù),所以函數(shù)也是單調(diào)遞增函數(shù),所以.故選:C8、B【解析】先求出點的坐標,然后根據(jù)拋物線的定義和已知條件列方程求解即可【詳解】因為為拋物線上一點,所以,得,所以,拋物線的焦點為,因為點P到拋物線C的焦點的距離與它到y(tǒng)軸的距離之比為,所以,化簡得,因為,所以,故選:B9、B【解析】方程有兩個根,轉(zhuǎn)化為求函數(shù)的單調(diào)性與極值【詳解】函數(shù)定義域是,有兩個零點,即有兩個不等實根,即有兩個不等實根設(shè),則,時,,遞減,時,,遞增,極小值=,而時,,時,,所以故選:B10、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D11、D【解析】根據(jù)題意,判斷命題和的真假性,結(jié)合判別式與二次函數(shù)恒成立問題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D12、B【解析】求出,點A到平面的距離:,由此能求出結(jié)果【詳解】解:,,,,∴為平面的一條斜線,且∴點到平面的距離:故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)直線與曲線相切的切點為,借助導(dǎo)數(shù)的幾何意義用表示出m,n即可作答.【詳解】設(shè)直線與曲線相切的切點為,而,則直線的斜率,于是得,即,由得,而,于是得,即因,則,,當且僅當時取“=”,所以的最小值為.故答案為:【點睛】結(jié)論點睛:函數(shù)y=f(x)是區(qū)間D上的可導(dǎo)函數(shù),則曲線y=f(x)在點處的切線方程為:.14、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.15、【解析】由題意得:考點:雙曲線離心率16、【解析】由題意分析,利用等差數(shù)列基本量代換列方程組即可求解.【詳解】記大夫,不更,簪裹,上造、公士得到的獵物數(shù)為等差數(shù)列,公差為d,由題意可得,即,解得,∴故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題意可得:點的軌跡為橢圓,設(shè)標準方程為:,則,,,解出可得橢圓的標準方程(2)設(shè),,直線方程與橢圓聯(lián)立,化為:,恒成立,由,可得,把根與系數(shù)的關(guān)系代入解得【詳解】解:(1)由題意可得:點的軌跡為橢圓,設(shè)標準方程為:,則,,,可得橢圓的標準方程為:(2)設(shè),,聯(lián)立,化為:,恒成立,,,,,,解得.滿足當時,能使【點睛】本題考查了橢圓的標準方程及其性質(zhì)、直線與橢圓相交弦長問題、數(shù)量積運算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于難題18、(1)證明見解析(2)證明見解析【解析】【小問1詳解】連接AC,分別是的中點,.在中,,所以四點共面.【小問2詳解】,所以,又平面平面,同理平面,為平面與平面的一個公共點.又平面平面,即三點共線.19、(1)(2)不存在,理由見解析【解析】(1)利用垂直關(guān)系,以點為原點,建立空間直角坐標系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標表示,判斷是否存在點滿足.【小問1詳解】∵,E為BD的中點∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原點,分別以EB、AE、EC′所在直線為x軸、y軸、z軸建立空間直角坐標系,則B(1,0,0),A(0,-,0),D(-1,0,0),F(xiàn)(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),設(shè)平面的法向量為=(x,y,z),則,取z=1,得平面的一個法向量=(,1,1),設(shè)平面FBA的法向量為=(a,b,c),則取b=1,得平面FBA的一個法向量為=(-,1,0),∴設(shè)平面ABD與平面的夾角為θ,則∴平面ABD與平面夾角的余弦值為.【小問2詳解】假設(shè)在線段AD上存在M(x,y,z),使得平面,設(shè)(0≤λ≤1),則(x,y+,z)=(-1,,0),即(x,y+,z)=(-λ,,0),∴,,z=0,∴,是平面的一個法向量由∥,得,此方程無解.∴線段AD上不存點M,使得平面.20、(1);(2)最大值為,最小值為.【解析】(1)求導(dǎo),結(jié)合導(dǎo)數(shù)的幾何意義列方程組,即可得解;(2)求導(dǎo),確定函數(shù)的單調(diào)性和極值,再和端點值比較即可得解.【詳解】(1)由題意,,因為曲線y=f(x)在點x=1處的切線為l:3x-y+1=0,所以,,又當時,y=f(x)有極值,所以,所以;(2)由(1)得,,所以當時,,函數(shù)單調(diào)遞增;當時,,函數(shù)單調(diào)遞減;又,,,,所以在[-3,1]上的最大值為,最小值為.21、(1),;(2)不存在,理由見解析.【解析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項和公比表示,得到一個方程組,求解即可得到首項和公比,結(jié)合等比數(shù)列的通項公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求出,再結(jié)合數(shù)列的第項與前項和之間的關(guān)系進行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達式,然后利用裂項相消求和法求出,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項、等差中項以及進行化簡變形,得到假設(shè)不成立,故可得到答案【詳解】(1)因為數(shù)列為等比數(shù)列,設(shè)首項為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因為,所以,所以,所以,由,可得,所以數(shù)列為等差數(shù)列,首項為,公差為1,故,則,當時,,當時,也適合上式,故(2)由,可得,所以,所以,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,則有,所以,則,即,因為,所以,即,所以,所以,則,所以,則,所以,即,所以,這與已知的,,互不相等矛盾,故不存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列【點睛】裂項相消法是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 技術(shù)專利可靠性及創(chuàng)新性承諾書范文6篇
- 一幅美麗的畫卷寫物作文7篇范文
- 在線技術(shù)支持服務(wù)交付保證承諾書(5篇)
- 智能設(shè)備功能功能保障承諾書3篇范文
- 學習習慣的培養(yǎng)與成長作文12篇
- 技術(shù)服務(wù)與支持質(zhì)量承諾書5篇
- 公益事業(yè)活動參與承諾書7篇
- 我心中的英雄贊美老師的抒情散文(8篇)
- 個人數(shù)據(jù)保護操作準則承諾書(4篇)
- 網(wǎng)絡(luò)數(shù)據(jù)安全保護與守秘承諾書8篇
- 福建省廈門市部分學校2025-2026學年九年級歷史上學期期末聯(lián)考試卷(含答案)
- 2025浙江杭州臨平環(huán)境科技有限公司招聘49人筆試模擬試題及答案解析
- 生活垃圾焚燒廠運管管理規(guī)范
- 江蘇省南京市2025-2026學年八年級上學期期末數(shù)學模擬試卷(蘇科版)(解析版)
- 箱式變電站安裝施工工藝
- 2025年安徽省普通高中學業(yè)水平合格性考試數(shù)學試卷(含答案)
- 油罐圍欄施工方案(3篇)
- 國家開放大學2025年(2025年秋)期末考試真題及答案
- 盤箱柜施工方案
- 2025年中小學教師正高級職稱評聘答辯試題(附答案)
- 非道路授權(quán)簽字人考試題及答案
評論
0/150
提交評論