【初中 數(shù)學(xué)】線段的垂直平分線第2課時(shí)課件2025-2026學(xué)年北師大版(2024)八年級(jí)數(shù)學(xué)下冊(cè)_第1頁(yè)
【初中 數(shù)學(xué)】線段的垂直平分線第2課時(shí)課件2025-2026學(xué)年北師大版(2024)八年級(jí)數(shù)學(xué)下冊(cè)_第2頁(yè)
【初中 數(shù)學(xué)】線段的垂直平分線第2課時(shí)課件2025-2026學(xué)年北師大版(2024)八年級(jí)數(shù)學(xué)下冊(cè)_第3頁(yè)
【初中 數(shù)學(xué)】線段的垂直平分線第2課時(shí)課件2025-2026學(xué)年北師大版(2024)八年級(jí)數(shù)學(xué)下冊(cè)_第4頁(yè)
【初中 數(shù)學(xué)】線段的垂直平分線第2課時(shí)課件2025-2026學(xué)年北師大版(2024)八年級(jí)數(shù)學(xué)下冊(cè)_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

DesignPPTer第一章1.4線段的垂直平分線初中數(shù)學(xué)北師大版(2024)八年級(jí)下冊(cè)第2課時(shí)三角形三邊垂直平分線的性質(zhì)1.已知底邊及底邊上的高,能用尺規(guī)作等腰三角形.2.已知直線外一點(diǎn),能用尺規(guī)作已知直線的垂線.(難點(diǎn))3.理解并掌握三角形三邊的垂直平分線的性質(zhì),并能應(yīng)用解決問題.(重點(diǎn)、難點(diǎn))學(xué)習(xí)目標(biāo)1.回顧一下線段的垂直平分線的性質(zhì)定理和判定定理CDAB性質(zhì):線段垂直平分線上的點(diǎn)到線段兩端的距離相等.判定:到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.解:如圖所示:∴直線CD為所求的線段AB的中垂線.2.線段的垂直平分線的作法知識(shí)回顧如圖,某區(qū)政府為了方便居民的生活,計(jì)劃在三個(gè)住宅小區(qū)A,B,C之間修建一個(gè)購(gòu)物中心,試問該購(gòu)物中心應(yīng)建于何處,才能使得它到三個(gè)小區(qū)的距離相等?情境引入添加章節(jié)標(biāo)題單擊此處添加文檔副標(biāo)題內(nèi)容01問題(1)已知三角形的一條邊及這條邊上的高,你能畫出滿足條件的三角形嗎?如果能,能畫出幾個(gè)?所畫出的三角形都全等嗎?(2)已知等腰三角形的底邊及底邊上的高,你能用尺規(guī)作出滿足條件的等腰三角形嗎?能作幾個(gè)?提示

能,這樣的三角形能畫出無數(shù)個(gè).因?yàn)楦叩奈恢每梢圆煌运鼈儾欢既?提示

能用尺規(guī)作出滿足條件的一個(gè)等腰三角形.例1

已知:如圖,線段a,h.求作:△ABC,使AB=AC,BC=a,高AD=h.解

作法:(1)作線段BC=a(如圖).(2)作線段BC的垂直平分線l,交BC于點(diǎn)D.(3)在l上作線段DA,使DA=h.(4)連接AB,AC.△ABC即為所求的等腰三角形.反思感悟已知底邊長(zhǎng)作等腰三角形時(shí),一般可先作底邊的垂直平分線,再結(jié)合等腰三角形底邊上的高確定另一個(gè)頂點(diǎn)的位置.例2

已知:如圖,直線l和l外一點(diǎn)P.求作:直線l的垂線,使它過點(diǎn)P.解

(1)如圖,以點(diǎn)P為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交直線l于點(diǎn)A,B.(2)作線段AB的垂直平分線m,直線m即為所求的垂線.

三角形三邊的垂直平分線的性質(zhì)21.三角形三邊的垂直平分線的性質(zhì)定理:三角形三條邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離

.2.銳角三角形三邊的垂直平分線的交點(diǎn)在三角形內(nèi)部;直角三角形三邊的垂直平分線的交點(diǎn)在斜邊的中點(diǎn)處;鈍角三角形三邊的垂直平分線的交點(diǎn)在三角形外部.相等知識(shí)梳理例3

(課本P32例2)已知:如圖,在△ABC中,邊AB的垂直平分線PD與邊BC的垂直平分線PE相交于點(diǎn)P.求證:邊AC的垂直平分線經(jīng)過點(diǎn)P.證明

如圖,連接PA,PB,PC,∵點(diǎn)P在邊AB的垂直平分線上,∴PA=PB(線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等).同理,PB=PC.∴PA=PB=PC.∴點(diǎn)P在線段AC的垂直平分線上(到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上),即邊AC的垂直平分線經(jīng)過點(diǎn)P.跟蹤訓(xùn)練2

如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),且OA=OB=OC,則點(diǎn)O是△ABC

的交點(diǎn).

三條邊的垂直平分線解析∵OA=OB,∴點(diǎn)O在線段AB的垂直平分線上,同理,點(diǎn)O在線段AC的垂直平分線上,點(diǎn)O在線段BC的垂直平分線上,∴點(diǎn)O是△ABC三條邊的垂直平分線的交點(diǎn).課堂小結(jié)1.已知底邊及底邊上的高,能用尺規(guī)作等腰三角形.2.已知直線外一點(diǎn),能用尺規(guī)作已知直線的垂線.3.三角形三條邊的垂直平分線相交于一點(diǎn),并且這一點(diǎn)到三個(gè)頂點(diǎn)的距離相等.1.某小區(qū)的三個(gè)出口A,B,C的位置如圖所示,物業(yè)公司計(jì)劃在不妨礙小區(qū)規(guī)劃的前提下,想在小區(qū)內(nèi)修建一個(gè)電動(dòng)車充電樁,以方便業(yè)主,要求充電樁到三個(gè)出口的距離都相等,則充電樁應(yīng)該在△ABCA.三條高線的交點(diǎn)處B.三條中線的交點(diǎn)處C.三條角平分線的交點(diǎn)處D.三條邊的垂直平分線的交點(diǎn)處課堂練習(xí)√2.如圖,在△ABC中,點(diǎn)O是△ABC內(nèi)一點(diǎn),連接OB,OC,OD垂直平分AB,若∠OBC=∠OCB,OC=4,則點(diǎn)A,O之間的距離為A.4 B.8 C.2 D.6√課堂練習(xí)隨堂演練解析如圖,連接OA,∵OD垂直平分AB,∴OA=OB,∵∠OBC=∠OCB,∴OB=OC=4,∴OA=OB=OC=4.課堂練習(xí)3.已知△ABC如圖所示,∠C>90°,求作BC邊上的高AD.(保留作圖痕跡,不寫作法)隨堂演練解如圖,線段AD即為所求.課堂練習(xí)4.如圖,直線l與m分別是△ABC的邊AC,BC的垂直平分線,l與m分別交邊AB于點(diǎn)D,E.

若AB=10,則△CDE的周長(zhǎng)為

?.10

課堂練習(xí)5.某公園有海盜船、摩天輪、碰碰車三個(gè)娛樂項(xiàng)目,現(xiàn)要在公園內(nèi)建一個(gè)售票中心,使得三個(gè)娛樂項(xiàng)目所處位置到售票中心的距離相等,請(qǐng)?jiān)趫D中確定售票中心的位置.解:如圖,①連接AB,AC;②分別作線段AB,AC的垂直平分線,兩條垂直平分線相交于點(diǎn)P,點(diǎn)P即為售票中心的位置.課堂練習(xí)6.如圖,已知線段a,直線l及l(fā)外一點(diǎn)A.

求作:等腰三角形ABC,使底邊BC在l上,且BC=a.(尺規(guī)作圖,不寫作法,保留作圖痕跡)解:如圖,△ABC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論