統(tǒng)編版2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第1頁
統(tǒng)編版2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第2頁
統(tǒng)編版2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第3頁
統(tǒng)編版2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第4頁
統(tǒng)編版2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

統(tǒng)編版(2026屆數(shù)學(xué)高二上期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,空間四邊形中,,,,且,,則()A. B.C. D.2.已知直線與平行,則系數(shù)()A. B.C. D.3.已知向量與平行,則()A. B.C. D.4.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.5.已知數(shù)據(jù)的平均數(shù)是,方差是4,則數(shù)據(jù)的方差是()A.3.4 B.3.6C.3.8 D.46.在中,,,且BC邊上的高為,則滿足條件的的個數(shù)為()A.3 B.2C.1 D.07.如圖所示的程序框圖,閱讀下面的程序框圖,則輸出的S=()A.14 B.20C.30 D.558.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.819.的展開式中的系數(shù)是()A. B.C. D.10.已知正方體中,分別為棱的中點,則直線與所成角的余弦值為()A. B.C. D.11.已知雙曲線C:的漸近線方程是,則m=()A.3 B.6C.9 D.12.將6位志愿者分成4組,其中兩個組各2人,另兩個組各1人,分赴廣交會的四個不同地方服務(wù),不同的分配方案有()種A.· B.·C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學(xué)生到某工廠進(jìn)行勞動實踐,利用打印技術(shù)制作模型.如圖,該模型為一個大圓柱中挖去一個小圓柱后的剩余部分(兩個圓柱底面圓的圓心重合),大圓柱的軸截面是邊長為的正方形,小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,打印所用原料的密度為,不考慮打印損耗,制作該模型所需原料的質(zhì)量為________g.(?。?4.方程()所表示的直線恒過定點________15.已知p:“”為真命題,則實數(shù)a的取值范圍是_________.16.以點為圓心,且與直線相切的圓的方程是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且是的中點.(1)求證:平面;(2)求二面角的余弦值.18.(12分)如圖,菱形的邊長為4,,矩形的面積為8,且平面平面(1)證明:;(2)求C到平面的距離.19.(12分)如圖,正三棱柱的側(cè)棱長為,底面邊長為,點為的中點,點在直線上,且(1)證明:面;(2)求平面和平面夾角的余弦值20.(12分)(1)解不等式;(2)若關(guān)于x的不等式解集為R,求實數(shù)k的取值范圍.21.(12分)已知拋物線上的點P(3,c)),到焦點F的距離為6(1)求拋物線C的方程;(2)過點Q(2,1)和焦點F作直線l交拋物線C于A,B兩點,求△PAB的面積22.(10分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)證明:對任意正整數(shù)n,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)空間向量的線性運算即可求解.【詳解】因為,又因為,,所以.故選:C2、B【解析】由直線的平行關(guān)系可得,解之可得【詳解】解:直線與直線平行,,解得故選:3、D【解析】根據(jù)兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.4、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設(shè)圓心坐標(biāo)為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因為直線:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設(shè)圓心坐標(biāo)為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標(biāo)為,故圓的方程為;故選:B5、B【解析】利用方差的定義即可解得.【詳解】由方差的定義,,則,所以數(shù)據(jù)的方差為:.故選:B6、B【解析】利用等面積法求得,再利用正弦定理求得,利用內(nèi)角和的關(guān)系及兩角和差化積公式,二倍角公式轉(zhuǎn)化為,再利用正弦函數(shù)的性質(zhì)求滿足條的的個數(shù),即可求解.【詳解】由三角形的面積公式知,即由正弦定理知所以,即,即,即利用兩角和的正弦公式結(jié)合二倍角公式化簡得又,則,,且由正弦函數(shù)的性質(zhì)可知,滿足的有2個,即滿足條件的的個數(shù)為2.故選:B7、C【解析】經(jīng)分析為直到型循環(huán)結(jié)構(gòu),按照循環(huán)結(jié)構(gòu)進(jìn)行執(zhí)行,當(dāng)滿足跳出的條件時即可輸出值【詳解】解:第一次循環(huán)S=1,i=2;第二次循環(huán)S=1+22=5,i=3;第三次循環(huán)S=5+32=14,i=4;第四次循環(huán)S=14+42=30,i=5;此時5>4,跳出循環(huán),故輸出的值為30故選:C.8、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.9、B【解析】根據(jù)二項式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B10、D【解析】以D為原點建立空間直角坐標(biāo)系,求出E,F,B,D1點的坐標(biāo),利用直線夾角的向量求法求解【詳解】如圖,以D為原點建立空間直角坐標(biāo)系,設(shè)正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選D【點睛】本題主要考查了空間向量的應(yīng)用及向量夾角的坐標(biāo)運算,屬于基礎(chǔ)題11、C【解析】根據(jù)雙曲線的漸近線求得的值.【詳解】依題意可知,雙曲線的漸近線為,所以.故選:C12、B【解析】先按要求分為四組,再四個不同地方,四個組進(jìn)行全排列.【詳解】兩個組各2人,兩個組各1人,屬于部分平均分組,要除以平均分組的組數(shù)的全排列,故分組方案有種,再將分得的4組,分配到四個不同地方服務(wù),則不同的分配方案有種.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、4500【解析】根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,再根據(jù)小圓柱的側(cè)面積是大圓柱側(cè)面積的一半,求出小圓柱的底面圓的半徑,然后求出該模型的體積,從而可得出答案.【詳解】解:根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設(shè)小圓柱的底面圓的半徑為,則有,即,解得,所以該模型的體積為,所以制作該模型所需原料的質(zhì)量為.故答案:4500.14、【解析】將方程化為,令得系數(shù)等于0,即可得到答案.【詳解】方程可化為,由,得,所以方程()所表示的直線恒過定點.故答案為:.【點睛】本題考查了直線恒過定點問題,屬于基礎(chǔ)題.15、【解析】根據(jù)條件將問題轉(zhuǎn)化不等式在上有解,則,由此求解出的取值范圍.【詳解】因為“”為真命題,所以不等式在上有解,所以,所以,故答案為:.16、;【解析】根據(jù)相切可得圓心到直線距離即為圓的半徑,利用點到直線距離公式解出半徑,即可得到圓的方程【詳解】由題,設(shè)圓心到直線的距離為,所以,因為圓與直線相切,則,所以圓的方程為,故答案為:【點睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,考查點到直線距離公式的應(yīng)用三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)取的中點F,連接EF,,由四邊形是平行四邊形即可求解;(2)采用建系法,以為軸,為軸,垂直底面方向為軸,求出對應(yīng)點坐標(biāo),結(jié)合二面角夾角余弦公式即可求解.【小問1詳解】取的中點F,連接EF,,∵,∴,且,∴,∴四邊形是平行四邊形,∴,又平面,平面,∴平面;【小問2詳解】取AC的中點O,以O(shè)為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,,,∴,.設(shè)平面的法向量是,則,即,令,得,易知平面的一個法向量是,∴,又二面角是鈍二面角,∴二面角的余弦值為.18、(1)證明見解析.(2)【解析】(1)利用線面垂直的性質(zhì)證明出;(2)利用等體積轉(zhuǎn)換法,先求出O到平面AEF的距離,再求C到平面的距離.【小問1詳解】在矩形中,.因為平面平面,平面平面,所以平面,所以.【小問2詳解】設(shè)AC與BD的交點為O,則C到平面AEF的距離為O到平面AEF的距離的2倍.因為菱形ABCD的邊長為4且,所以.因為矩形BDFE的面積為8,所以BE=2.,,則三棱錐的體積.在△AEF中,,所以.記O到平面AEF的距離為d.由得:,解得:,所以C到平面AEF的距離為.19、(1)證明見解析(2)【解析】(1)證明平面,可得出,再由結(jié)合線面垂直的判定定理可證得結(jié)論成立;(2)以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立空間直角坐標(biāo)系,利用空間向量法可求得結(jié)果.【小問1詳解】證明:正中,點為的中點,,因為平面,平面,則,,則平面,平面,則,又,且,平面.【小問2詳解】解:因為,以點為坐標(biāo)原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標(biāo)系,則、、、,設(shè)平面的法向量為,,,則,取,可得,平面,平面,則,又因為,,故平面,所以,平面的一個法向量為,則.因此,平面和平面夾角的余弦值為.20、(1);(2).【解析】(1)直接求解不含參數(shù)的一元二次不等式即可;(2)分與兩種情況進(jìn)行討論即可求出結(jié)果.【詳解】(1)不等式可化為,解集為(2)若的解集為R,當(dāng)時,的解集為,不合題意;當(dāng)時,則解得綜上,實數(shù)k的取值范圍是21、(1)(2)【解析】(1)根據(jù)拋物線的焦半徑公式求得,即可得到拋物線方程;(2)寫出直線方程,聯(lián)立拋物線方程,進(jìn)而求得弦長|AB|,再求出點P到直線的距離,即可求得答案.【小問1詳解】由拋物線的焦半徑公式可知:,即得,故拋物線方程為:;【小問2詳解】點Q(2,1)和焦點作直線l,則l方程為,即,聯(lián)立拋物線方程:,整理得,設(shè),則,故,點P(3,c)在拋物線上,則,點P到直線l的距離為,故△PAB的面積為.22、(1)見解析(2)見解析【解析】(1)由,令,得,或,又的定義域為,討論兩個根及的大小關(guān)系,即可判定函數(shù)的單調(diào)性;(2)當(dāng)時,在,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論