江西贛中南五校2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第1頁
江西贛中南五校2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第2頁
江西贛中南五校2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第3頁
江西贛中南五校2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第4頁
江西贛中南五校2026屆數(shù)學高二上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西贛中南五校2026屆數(shù)學高二上期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設拋物線C:的焦點為,準線為.是拋物線C上異于的一點,過作于,則線段的垂直平分線()A.經(jīng)過點 B.經(jīng)過點C.平行于直線 D.垂直于直線2.在等比數(shù)列{an}中,a1=8,a4=64,則a3等于()A.16 B.16或-16C.32 D.32或-323.如圖是一個程序框圖,執(zhí)行該程序框圖,則輸出的n值是()A.2 B.3C.4 D.54.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.5.圍棋起源于中國,據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關聯(lián),蘊含著中華文化的豐富內涵.在某次國際圍棋比賽中,規(guī)定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據(jù)以往戰(zhàn)績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.366.設,,,…,,,則()A. B.C. D.7.過拋物線C:y2=4x的焦點F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.168.已知f(x)是定義在R上的偶函數(shù),當時,,且f(-1)=0,則不等式的解集是()A. B.C. D.9.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.10.在空間直角坐標系下,點關于平面的對稱點的坐標為()A. B.C. D.11.已知,分別為雙曲線:的左,右焦點,以為直徑的圓與雙曲線的右支在第一象限交于點,直線與雙曲線的右支交于點,點恰好為線段的三等分點(靠近點),則雙曲線的離心率等于()A. B.C. D.12.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,且,則_____________14.點為雙曲線上一點,為焦點,如果則雙曲線的離心率為___________.15.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______16.已知方程表示焦點在x軸上的雙曲線,則m的取值范圍為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在多面體中,和均為等邊三角形,D是的中點,.(1)證明:;(2)若,求多面體的體積.18.(12分)已知拋物線的準線方程是,直線與拋物線相交于M、N兩點(1)求拋物線的方程;(2)求弦長;(3)設O為坐標原點,證明:19.(12分)已知函數(shù)在處的切線與直線平行(1)求值,并求此切線方程;(2)證明:20.(12分)新疆長絨棉品質優(yōu)良,纖維柔長,被世人譽為“棉中極品”,產(chǎn)于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價棉花質量的重要指標之一,在新疆某地區(qū)成熟的長絨棉中隨機抽測了一批棉花的纖維長度(單位:mm),將樣本數(shù)據(jù)制成頻率分布直方圖如下:(1)求的值;(2)估計該樣本數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值為代表);(3)根據(jù)棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區(qū)成熟的棉花中隨機抽測兩根棉花的纖維長度,用樣本的頻率估計概率,求至少有一根棉花纖維長度達到特等品的概率.21.(12分)已知橢圓:的左、右焦點分別為,,離心率為,且過點.(1)求橢圓的標準方程;(2)若過點的直線與橢圓相交于,兩點(A、B非橢圓頂點),求的最大值.22.(10分)已知圓C經(jīng)過坐標原點O和點(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點,求所得弦長值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】依據(jù)題意作出焦點在軸上的開口向右的拋物線,根據(jù)垂直平分線的定義和拋物線的定義可知,線段的垂直平分線經(jīng)過點,即可求解.【詳解】如圖所示:因為線段的垂直平分線上的點到的距離相等,又點在拋物線上,根據(jù)定義可知,,所以線段的垂直平分線經(jīng)過點.故選:A.2、C【解析】首先根據(jù)a4=a1q3,求得q=2,再由a3=即可得解.【詳解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故選:C3、B【解析】程序框圖中的循環(huán)結構,一般需重復計算,根據(jù)判斷框中的條件,確定何時終止循環(huán),輸出結果.【詳解】初始值:,當時,,進入循環(huán);當時,,進入循環(huán);當時,,終止循環(huán),輸出的值為3.故選:B4、A【解析】根據(jù)已知條件,結合拋物線的定義,可得點P到直線和直線的距離之和,當B,P,F(xiàn)三點共線時,最小,再結合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準線為,焦點為,∴點P到準線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A5、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結果.【詳解】甲最終獲得冠軍的概率,故選:B.6、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項.【詳解】,,,,,……,以此類推,,所以.故選:B7、B【解析】設出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達出,同理表達出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點F為,直線l1的方程為,則聯(lián)立后得到,設,,,則,同理設可得:,因為|k1·k2|=2,所以,當且僅當,即或時,等號成立,故選:B8、D【解析】根據(jù)題意可知,當時,,即函數(shù)在上單調遞增,再結合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調性,進而解得答案.【詳解】由題意,當時,,則函數(shù)在上單調遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調遞增,而f(-1)=0,則.于是當時,.故選:D.9、D【解析】由題設可得求出橢圓參數(shù),即可得方程.【詳解】由題設,知:,可得,則,∴C的方程為.故選:D.10、C【解析】根據(jù)空間坐標系中點的對稱關系求解【詳解】點關于平面的對稱點的坐標為,故選:C11、C【解析】設,,根據(jù)雙曲線的定義可得,,在中由勾股定理列方程可得,在中由勾股定理可得關于,的方程,再由離心率公式即可求解.【詳解】設,則,由雙曲線的定義可得:,,因為點在以為直徑的圓上,所以,所以,即,解得:,在中,,,,由可得,即,所以雙曲線離心率為,故選:C.第II卷(非選擇題12、C【解析】設直線的傾斜角為,則,解方程即可.【詳解】由已知,設直線的傾斜角為,則,又,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由共線向量得,解方程即可.【詳解】因為,所以,解得.故答案為:214、【解析】利用雙曲線的定義、離心率的計算公式、兩角和差的正弦公式即可得出.【詳解】由可得,根據(jù)雙曲線的定義可得:,.故答案為:15、.【解析】利用空間向量夾角公式進行求解即可.【詳解】取CD的中點O,以O為原點,以CD所在直線為x軸,以底面內過點O且與CD垂直的直線為y軸,以過點O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標系設,則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:16、【解析】根據(jù)焦點在軸的雙曲線的標準方程的特征可得答案.【詳解】因為雙曲線的焦點在軸上,則,解得.所以的取值范圍為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見詳解(1).(2)16【解析】(1)證線面垂直從而證線線垂直.(2)把面體看成兩個錐體,由已知線面垂直得高,并進一步可求錐體底面邊長,從而得解.【小問1詳解】因為,所以共面,連接、,因為和均為等邊三角形,D是的中點,所以,,,所以面平,平面,【小問2詳解】因為,,四邊形是平行四邊形,和均為等邊三角形,D是的中點,所以,,平行四邊形是正方形形,,.18、(1);(2);(3)詳見解析.【解析】(1)根據(jù)拋物線的準線方程求解;(2)由直線方程與拋物線方程聯(lián)立,利用弦長公式求解;(3)結合韋達定理,利用數(shù)量積運算證明;【小問1詳解】解:因為拋物線的準線方程是,所以,解得,所以拋物線的方程是;【小問2詳解】由,得,設,則,所以;【小問3詳解】因為,,,所以,即.19、(1);;(2)證明見解析.【解析】(1)根據(jù)導數(shù)幾何意義可知,解方程求得,進而得到切線方程;(2)當時,由,知不等式成立;當時,令,利用導數(shù)可求得在上單調遞增,從而得到,由此可得結論.【小問1詳解】,,在處的切線與直線平行,即切線斜率為,,解得:,,,所求切線方程為:,即;【小問2詳解】要證,即證;①當時,,,,即,;②當時,令,,,當時,,,,,即,在上單調遞增,,在上單調遞增,,即在上恒成立;綜上所述:.【點睛】思路點睛:本題第二問考查利用導數(shù)證明不等式的問題,解題的基本思路是將問題轉化為函數(shù)最值的求解問題;通過構造函數(shù),利用導數(shù)求函數(shù)最值的方法可確定恒成立,從而得到所證結論.20、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有矩形的面積之和為1,可求出答案.(2)根據(jù)平均數(shù)的公式可得到答案.(3)先求出一根棉花纖維長度達到特等品的概率,然后分恰好有一根和兩根棉花小問1詳解】由解得【小問2詳解】該樣本數(shù)據(jù)的平均數(shù)為:【小問3詳解】由題意一根棉花纖維長度達到特等品的概率為:兩根棉花中至少有一根棉花纖維長度達到特等品的概率21、(1)(2)【解析】(1)根據(jù)離心率和點在橢圓上建立方程,結合,然后解出方程即可(2)設直線的斜率為,聯(lián)立直線與橢圓的方程,然后利用韋達定理表示出,兩點的坐標關系,并表示出為直線斜率的函數(shù),然后求出的最大值【小問1詳解】由橢圓過點,則有:由可得:解得:則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論