版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆江蘇省淮安市淮陰區(qū)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.根據(jù)如下樣本數(shù)據(jù),得到回歸直線方程,則x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.2.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個3.如圖,兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切.已知時,在兩相交大圓的區(qū)域內(nèi)隨機(jī)取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.4.已知函數(shù),則()A.3 B.C. D.5.已知拋物線,過其焦點且斜率為1的直線交拋物線于A,B兩點,若線段AB的中點的橫坐標(biāo)為3,則該拋物線的準(zhǔn)線方程為()A. B.C. D.6.空間直角坐標(biāo)系中、、)、,其中,,,,已知平面平面,則平面與平面間的距離為()A. B.C. D.7.離心率為,長軸長為6的橢圓的標(biāo)準(zhǔn)方程是A. B.或C. D.或8.“且”是“”的()A.充分不必要條件 B.必要不充分條件C充要條件 D.既不充分也不必要條件9.如圖甲是第七屆國際數(shù)學(xué)家大會(簡稱ICME—7)的會徽圖案,其主體圖案是由圖乙的一連串直角三角形演化而成的.已知,,,,為直角頂點,設(shè)這些直角三角形的周長從小到大組成的數(shù)列為,令,為數(shù)列的前項和,則()A.8 B.9C.10 D.1110.命題“若,則”為真命題,那么不可能是()A. B.C. D.11.若,滿足約束條件則的最大值是A.-8 B.-3C.0 D.112.已知,則條件“”是條件“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線焦點坐標(biāo)是,則______14.已知數(shù)列滿足,,的前項和為,則______.15.如圖,某河流上有一座拋物線形的拱橋,已知橋的跨度米,高度米(即橋拱頂?shù)交诘闹本€的距離).由于河流上游降雨,導(dǎo)致河水從橋的基座處開始上漲了1米,則此時橋洞中水面的寬度為______米16.已知幾何體如圖所示,其中四邊形ABCD,CDGF,ADGE均為正方形,且邊長為1,點M在DG上,若直線MB與平面BEF所成的角為45°,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知點在橢圓上,其中為橢圓E的離心率(1)求b的值;(2)A,B分別為橢圓E的左右頂點,過點的直線l與橢圓E相交于M,N兩點,直線與交于點T,求證:18.(12分)已知橢圓的左焦點為F,右頂點為,M是橢圓上一點.軸且(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)直線與橢圓C交于E,H兩點,點G在橢圓C上,且四邊形平行四邊形(其中O為坐標(biāo)原點),求19.(12分)已知橢圓C:的離心率為,點和點都在橢圓C上,直線PA交x軸于點M(1)求橢圓C的方程,并求點M的坐標(biāo)(用m,n表示);(2)設(shè)O為原點,點B與點A關(guān)于x軸對稱,直線PB交x軸于點N,問:y軸上是否存在點Q(不與O重合),使得?若存在,求點Q的坐標(biāo),若不存在,說明理由20.(12分)已知直線經(jīng)過點且斜率為(1)求直線的一般式方程(2)求與直線平行,且過點的直線的一般式方程(3)求與直線垂直,且過點的直線的一般式方程21.(12分)在平面直角坐標(biāo)系中,已知點,,點滿足,記點的軌跡為.(1)求的方程;(2)已知,是經(jīng)過圓上一點且與相切的兩條直線,斜率分別為,,直線的斜率為,求證:為定值.22.(10分)已知拋物線上任意一點到焦點F最短距離為2,(1)求拋物線C的方程;(2)過焦點F的直線,互相垂直,且與C分別交于A,B,M,N四點,求四邊形AMBN面積的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】作出散點圖,由散點圖得出回歸直線中的的符號【詳解】作出散點圖如圖所示.由圖可知,回歸直線=x+的斜率<0,當(dāng)x=0時,=>0.故選B【點睛】本題考查了散點圖的概念,擬合線性回歸直線第一步畫散點圖,再由數(shù)據(jù)計算的值2、B【解析】構(gòu)造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構(gòu)造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當(dāng)與水平面垂直且在面的左側(cè)(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉(zhuǎn),轉(zhuǎn)一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30
,綜上,這樣的平面α有2個,故選:B.3、C【解析】設(shè)D為線段AB的中點,求得,在中,可得.進(jìn)而求得兩大圓公共部分的面積為:,利用幾何概型計算即可得出結(jié)果.【詳解】如圖,設(shè)D為線段AB的中點,,在中,.兩大圓公共部分的面積為:,則該點取自兩大圓公共部分的概率為.故選:C.4、B【解析】由導(dǎo)數(shù)運算法則求出導(dǎo)發(fā)函數(shù),然后可得導(dǎo)數(shù)值【詳解】由題意,所以故選:B5、B【解析】設(shè),進(jìn)而根據(jù)題意,結(jié)合中點弦的問題得,進(jìn)而再求解準(zhǔn)線方程即可.【詳解】解:根據(jù)題意,設(shè),所以①,②,所以,①②得:,即,因為直線AB的斜率為1,線段AB的中點的橫坐標(biāo)為3,所以,即,所以拋物線,準(zhǔn)線方程為.故選:B6、A【解析】由已知得,,,設(shè)向量與向量、都垂直,由向量垂直的坐標(biāo)運算可求得,再由平面平行和距離公式計算可得選項.【詳解】解:由已知得,,,設(shè)向量與向量、都垂直,則,即,取,,又平面平面,則平面與平面間的距離為,故選:A.7、B【解析】試題解析:當(dāng)焦點在x軸上:當(dāng)焦點在y軸上:考點:本題考查橢圓的標(biāo)準(zhǔn)方程點評:解決本題的關(guān)鍵是焦點位置不同方程不同8、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當(dāng)且時,成立,反過來,當(dāng)時,例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點睛】本題考查充分不必要條件的判斷,重點考查基本判斷方法,屬于基礎(chǔ)題型.9、B【解析】由題意可得的邊長,進(jìn)而可得周長及,進(jìn)而可得,可得解.【詳解】由,可得,,,,所以,,所以前項和,所以,故選:B.10、D【解析】根據(jù)命題真假的判斷,對四個選項一一驗證即可.【詳解】對于A:若,則必成立;對于B:若,則必成立;對于C:若,則必成立;對于D:由不能得出,所以不可能是.故選:D11、C【解析】作出可行域,把變形為,平移直線過點時,最大.【詳解】作出可行域如圖:由得:,作出直線,平移直線過點時,.故選C.【點睛】本題主要考查了簡單線性規(guī)劃問題,屬于中檔題.12、A【解析】若命題,則p是q的充分不必要條件,q是p的必要不充分條件【詳解】因為,所以,所以.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)拋物線的幾何性質(zhì)直接求解可得.【詳解】的焦點坐標(biāo)為,即.故答案為:214、【解析】分析出當(dāng)為正奇數(shù)時,,可求得的值,再分析出當(dāng)為正偶數(shù)時,,可求得的值,進(jìn)而可求得的值.【詳解】由題知,當(dāng)為正奇數(shù)時,,于是,,,,,所以.又因為當(dāng)為正偶數(shù)時,,且,所以兩式相加可得,于是,兩式相減得.所以,故.故答案為:.【點睛】關(guān)鍵點點睛:本題的解題關(guān)鍵在于分析出當(dāng)為正奇數(shù)時,,以及當(dāng)為正偶數(shù)時,,找出規(guī)律,結(jié)合并項求和法求出以及的值.15、【解析】以橋的頂點為坐標(biāo)原點,水平方向所在直線為x軸建立直角坐標(biāo)系,則根據(jù)點在拋物線上,可得拋物線的方程,設(shè)水面與橋的交點坐標(biāo)為,求出,進(jìn)而可得水面的寬度.【詳解】以橋的頂點為坐標(biāo)原點,水平方向所在直線為x軸建立直角坐標(biāo)系,則拋物線的方程為,因為點在拋物線上,所以,即故拋物線的方程為,設(shè)河水上漲1米后,水面與橋的交點坐標(biāo)為,則,得,所以此時橋洞中水面的寬度為米故答案為:16、##【解析】把該幾何體補(bǔ)成一個正方體,如圖,利用正方體的性質(zhì)證明面面垂直得出直線MB與平面BEF所成的角,然后計算可得【詳解】把該幾何體補(bǔ)成一個正方體,如圖,,連接,由平面,平面,得,同理,又正方形中,,,平面,所以平面,而平面,所以平面平面,所以平面內(nèi)的直線在平面上的射影是,即是直線MB與平面BEF所成的角,,,,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1(2)證明見解析【解析】(1)根據(jù)點在橢圓E上建立方程,結(jié)合,然后解出方程即可;(2)聯(lián)立直線與橢圓的方程,表示出直線與,求得交點的坐標(biāo),再分別表示出直線和的斜率并作差,通過韋達(dá)定理證明直線和的斜率相等即可.【小問1詳解】由點在橢圓E上,得:又,即解得:【小問2詳解】依題意,得,且直線l與x軸不會平行設(shè)直線l的方程為,,由方程組消去x可得:則有:,且直線的方程為,直線的方程為由方程組可得:設(shè)直線的斜率分別是,則有:可得:又可得:故【點睛】(1)解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系(2)涉及到直線方程時,務(wù)必考慮全面,不要忽略直線斜率為或不存在等特殊情形請考生在第22-23題中任選一題作答,如果多做,則按所做的第一題計分18、(1)(2)【解析】(1)根據(jù)橢圓的簡單幾何性質(zhì)即可求出;(2)設(shè),聯(lián)立與橢圓方程,求出,再根據(jù)平行四邊形的性質(zhì)求出點的坐標(biāo),然后由點G在橢圓C上,可求出,從而可得【小問1詳解】∵橢圓C的右頂點為,∴,∵軸,且,∴,∴,所以橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè),將直線代入,消去y并整理得,由,得.(*)由根與系數(shù)的關(guān)系可得,∴,∵四邊形為平行四邊形,∴,得,將G點坐標(biāo)代人橢圓C的方程得,滿足(*)式∴19、(1),;(2)存在或,使得,理由見解析.【解析】(1)根據(jù)離心率,及求出,,進(jìn)而得到橢圓方程及用m,n表示點M的坐標(biāo);(2)假設(shè)存在,根據(jù)得到,表達(dá)出點坐標(biāo),得到,結(jié)合得到,從而求出答案.【小問1詳解】由離心率可知:,又,,解得:,,故橢圓C:,直線PA為:,令得:,所以;【小問2詳解】存在或,使得,理由如下:假設(shè),使得,則,其中,直線:,令得:,則,,解得:,其中,故,所以,所以或20、(1)(2)(3)【解析】(1)先寫點斜式方程,再化一般式,(2)根據(jù)平行設(shè)一般式,再代點坐標(biāo)得結(jié)果,(3)根據(jù)垂直設(shè)一般式,再代點坐標(biāo)得結(jié)果.【詳解】(1)(2)設(shè)所求方程為因為過點,所以(3)設(shè)所求方程為因為過點,所以【點睛】本題考查直線方程,考查基本分析求解能力,屬基礎(chǔ)題.21、(1);(2)證明見解析.【解析】(1)根據(jù)雙曲線的定義可得答案;(2)設(shè),過點的的切線方程為,聯(lián)立此直線與雙曲線的方程消元,然后由可得,即可得到,然后可證明.【小問1詳解】因為,所以點的軌跡是以為焦點的雙曲線的右支,所以,,所以,所以的方程為【小問2詳解】設(shè),則,設(shè)過點的切線方程為,聯(lián)立可得由可得,所以所以22、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)學(xué)檢驗技術(shù)培訓(xùn)要點分析
- 2026年廣東金融學(xué)院單招綜合素質(zhì)筆試備考題庫帶答案解析
- 心臟病護(hù)理技術(shù)與方法探討
- 護(hù)理護(hù)理專業(yè)發(fā)展前景與挑戰(zhàn)
- 2026年貴州城市職業(yè)學(xué)院單招綜合素質(zhì)考試參考題庫帶答案解析
- 醫(yī)院財務(wù)管理狀況分析報告
- 2026年廣西電力職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試參考題庫有答案解析
- 財政預(yù)算審計課件
- 醫(yī)療互聯(lián)網(wǎng)平臺的數(shù)據(jù)安全與隱私保護(hù)
- 傳染科防控措施總結(jié)
- 2024年全國體育單獨統(tǒng)一招生考試語文試卷附答案
- 中職高教版(2023)語文職業(yè)模塊-第五單元:走近大國工匠(一)展示國家工程-了解工匠貢獻(xiàn)【課件】
- 文化差異與電影國際合作-洞察分析
- 濃鹽水深度處理及零排放方案
- 黑吉遼2024年高考物理
- 城市照明合同能源管理技術(shù)規(guī)程
- 馬克思主義中國化理論成果
- 永康房地產(chǎn)調(diào)研報告課件
- 讓課堂煥發(fā)生命的活力
- 《赤壁賦》理解性默寫匯編(超詳細(xì))
- 貴州省安順市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)及行政區(qū)劃劃分代碼居民村民委員會
評論
0/150
提交評論