2026屆廣東省深圳市龍崗區(qū)東升學(xué)校高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第1頁(yè)
2026屆廣東省深圳市龍崗區(qū)東升學(xué)校高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第2頁(yè)
2026屆廣東省深圳市龍崗區(qū)東升學(xué)校高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第3頁(yè)
2026屆廣東省深圳市龍崗區(qū)東升學(xué)校高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第4頁(yè)
2026屆廣東省深圳市龍崗區(qū)東升學(xué)校高二數(shù)學(xué)第一學(xué)期期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆廣東省深圳市龍崗區(qū)東升學(xué)校高二數(shù)學(xué)第一學(xué)期期末考試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.直線在y軸上的截距為()A. B.C. D.2.已知雙曲線:的左、右焦點(diǎn)分別為,,且,點(diǎn)是的右支上一點(diǎn),且,,則雙曲線的方程為()A. B.C. D.3.已知數(shù)列是等差數(shù)列,下面的數(shù)列中必為等差數(shù)列的個(gè)數(shù)為()①②③A.0 B.1C.2 D.34.已知一組數(shù)據(jù)為:2,4,6,8,這4個(gè)數(shù)的方差為()A.4 B.5C.6 D.75.已知數(shù)列{}滿足,則()A. B.C. D.6.過(guò)點(diǎn),的直線的斜率等于1,則m的值為()A.1 B.4C.1或3 D.1或47.如果雙曲線的一條漸近線方程為,且經(jīng)過(guò)點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程是()A. B.C. D.8.已知,則下列三個(gè)數(shù),,()A.都不大于-4 B.至少有一個(gè)不大于-4C.都不小于-4 D.至少有一個(gè)不小于-49.如圖,四棱錐的底面是矩形,設(shè),,,是棱上一點(diǎn),且,則()A. B.C. D.10.如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于點(diǎn)P,則點(diǎn)P的軌跡是()A.圓 B.雙曲線C.拋物線 D.橢圓11.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值是()A. B.C. D.412.已知空間向量,,,若,,共面,則m+2t=()A.-1 B.0C.1 D.-6二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)列的前項(xiàng)和為,則該數(shù)列的通項(xiàng)公式___________14.已知函數(shù),則的導(dǎo)函數(shù)______.15.已知函數(shù)在點(diǎn)處的切線為直線l,則l與坐標(biāo)軸圍成的三角形面積為_(kāi)__________.16.已知雙曲線的左焦點(diǎn)為F,點(diǎn)P在雙曲線右支上,若線段PF的中點(diǎn)在以原點(diǎn)O為圓心,為半徑的圓上,且直線PF的斜率為,則該雙曲線的離心率是______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在①;②,這兩個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,然后解答補(bǔ)充完整的題目.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,設(shè)的面積為S,已知_________.(1)求的值;(2)若,求值.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.18.(12分)記是等差數(shù)列的前項(xiàng)和,若.(1)求數(shù)列的通項(xiàng)公式;(2)求使成立的的最小值.19.(12分)已知等比數(shù)列的前項(xiàng)和為,,.?dāng)?shù)列的前項(xiàng)和為,且,(1)分別求數(shù)列和的通項(xiàng)公式;(2)若,為數(shù)列的前項(xiàng)和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說(shuō)明理由20.(12分)已知圓C:x2+y2+2ax﹣3=0,且圓C上存在兩點(diǎn)關(guān)于直線3x﹣2y﹣3=0對(duì)稱.(1)求圓C的半徑r;(2)若直線l過(guò)點(diǎn)A(2,),且與圓C交于MN,兩點(diǎn),|MN|=2,求直線l的方程.21.(12分)如圖所示,是棱長(zhǎng)為的正方體,是棱的中點(diǎn),是棱的中點(diǎn)(1)求直線與平面所成角的正弦值;(2)求到平面的距離22.(10分)已知:對(duì)任意,都有;:存在,使得(1)若“且”為真,求實(shí)數(shù)的取值范圍;(2)若“或”為真,“且”為假,求實(shí)數(shù)的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】將代入直線方程求y值即可.【詳解】令,則,得.所以直線在y軸上的截距為.故選:D2、B【解析】畫(huà)出圖形,利用已知條件轉(zhuǎn)化求解,關(guān)系,利用,解得,即可得到雙曲線的方程【詳解】由題意雙曲線的圖形如圖,連接與軸交于點(diǎn),設(shè),,因?yàn)?,所以,因?yàn)?,所以,則,因?yàn)辄c(diǎn)是的右支上一點(diǎn),所以,所以,則,因?yàn)?,所以,,由勾股定理可得:,即,解得,則,所以雙曲線的方程為:故選:B3、C【解析】根據(jù)等差數(shù)列的定義判斷【詳解】設(shè)的公差為,則,是等差數(shù)列,,是常數(shù)列,也是等差數(shù)列,若,則不是等差數(shù)列,故選:C4、B【解析】根據(jù)數(shù)據(jù)的平均數(shù)和方差的計(jì)算公式,準(zhǔn)確計(jì)算,即可求解.【詳解】由平均數(shù)的計(jì)算公式,可得,所以這4個(gè)數(shù)的方差為故選:B.5、B【解析】先將通項(xiàng)公式化簡(jiǎn)然后用裂項(xiàng)相消法求解即可.【詳解】因?yàn)椋?故選:B6、A【解析】解方程即得解.【詳解】由題得.故選:A【點(diǎn)睛】本題主要考查斜率的計(jì)算,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平.7、D【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,然后將點(diǎn)代入,進(jìn)而求得答案.【詳解】因?yàn)殡p曲線的一條漸近線方程為,所以設(shè)雙曲線方程為,將代入得:,即雙曲線方程為.故選:D.8、B【解析】利用反證法設(shè),,都大于,結(jié)合基本不等式即可得出結(jié)論.【詳解】設(shè),,都大于,則,由于,故,利用基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,故下列三個(gè)數(shù),,至少有一個(gè)不大于,故選:B.9、B【解析】根據(jù)空間向量基本定理求解【詳解】由已知故選:B10、D【解析】根據(jù)題意知,所以,故點(diǎn)P的軌跡是橢圓.【詳解】由題意知,關(guān)于CD對(duì)稱,所以,故,可知點(diǎn)P的軌跡是橢圓.【點(diǎn)睛】本題主要考查了橢圓的定義,屬于中檔題.11、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項(xiàng)和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.12、D【解析】根據(jù)向量共面列方程,化簡(jiǎn)求得.【詳解】,所以不共線,由于,,共面,所以存在,使,即,,,,,即.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)與關(guān)系求解即可.【詳解】當(dāng)時(shí),,當(dāng)時(shí),,檢驗(yàn):,所以.故答案為:14、【解析】利用基本初等函數(shù)的求導(dǎo)公式及積的求導(dǎo)法則計(jì)算作答.【詳解】函數(shù)定義域?yàn)椋瑒t,所以.故答案為:15、【解析】先求出切線方程,分別得到直線與x、y軸交點(diǎn),即可求出三角形的面積.【詳解】由函數(shù)可得:函數(shù),所以,.所以切線l:,即.令,得到;令,得到;所以l與坐標(biāo)軸圍成的三角形面積為.故答案為:.16、3【解析】如圖利用條件可得,,然后利用雙曲線的定義可得,即求.【詳解】如圖設(shè)雙曲線的右焦點(diǎn)為,線段PF的中點(diǎn)為M,連接,則,又直線PF的斜率為,∴在直角三角形中,,∴,∴,即,∴.故答案:3.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、條件選擇見(jiàn)解析;(1);(2).【解析】(1)若選擇①,先利用正弦定理進(jìn)行邊角互化,再結(jié)合正余弦的和差角公式化簡(jiǎn)可得,得出;若選擇②,利用余弦定理及面積公式可得,得;(2)由(1)可知,由及得,,再根據(jù)余弦定理求解的值.【詳解】解析:(1)選擇條件①.,,得,選擇條件②,由余弦定理及三角形的面積公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【點(diǎn)睛】本題考查解三角形,難度一般.解答的關(guān)鍵在于根據(jù)題目中邊角關(guān)系,運(yùn)用正弦定理進(jìn)行邊角互化、再根據(jù)兩角和與差的正弦公式進(jìn)行化簡(jiǎn)是關(guān)鍵.一般地,當(dāng)?shù)仁街泻衋,b,c的關(guān)系式,且全為二次時(shí),可利用余弦定理進(jìn)行化簡(jiǎn);當(dāng)含有內(nèi)角的正弦值及邊的關(guān)系,且為一次式時(shí),可考慮采用正弦定理進(jìn)行邊角互化.18、(1)(2)4【解析】(1)根據(jù)題意得,解方程得,進(jìn)而得通項(xiàng)公式;(2)由題知,進(jìn)而解不等式得或,再根據(jù)即可得答案.【小問(wèn)1詳解】設(shè)等差數(shù)列的公差為,由得=0,由題意知,,解得,所以d=2所以.小問(wèn)2詳解】解:由(1)可得,由可得,即,解得或,因?yàn)?,所以,正整?shù)的最小值為.19、(1),;(2)不存在,理由見(jiàn)解析.【解析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項(xiàng)和公比表示,得到一個(gè)方程組,求解即可得到首項(xiàng)和公比,結(jié)合等比數(shù)列的通項(xiàng)公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式求出,再結(jié)合數(shù)列的第項(xiàng)與前項(xiàng)和之間的關(guān)系進(jìn)行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達(dá)式,然后利用裂項(xiàng)相消求和法求出,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項(xiàng)、等差中項(xiàng)以及進(jìn)行化簡(jiǎn)變形,得到假設(shè)不成立,故可得到答案【詳解】(1)因?yàn)閿?shù)列為等比數(shù)列,設(shè)首項(xiàng)為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因?yàn)?,所以,所以,所以,由,可得,所以?shù)列為等差數(shù)列,首項(xiàng)為,公差為1,故,則,當(dāng)時(shí),,當(dāng)時(shí),也適合上式,故(2)由,可得,所以,所以,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,則有,所以,則,即,因?yàn)椋?,即,所以,所以,則,所以,則,所以,即,所以,這與已知的,,互不相等矛盾,故不存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列【點(diǎn)睛】裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),常見(jiàn)的裂項(xiàng)技巧:(1);(2);(3);(4);此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.20、(1)r=2(2)x﹣2=0或x+﹣3=0【解析】(1)由已知根據(jù)對(duì)稱性可知直線m過(guò)圓心C.代入后可求a,進(jìn)而可求半徑;(2)先求出圓心到直線l的距離,然后結(jié)合直線與圓相交的弦長(zhǎng)公式可求.【小問(wèn)1詳解】解:圓C的標(biāo)準(zhǔn)方程為,圓心為.因?yàn)閳AC關(guān)于直線m對(duì)稱,所以直線m過(guò)圓心C.將代入,解得.此時(shí)圓C的標(biāo)準(zhǔn)方程為,半徑r=2.【小問(wèn)2詳解】解:設(shè)圓心到直線距離為d,則d===1,①當(dāng)直線l斜率不存在時(shí),直線方程l為x=2,符合條件.②當(dāng)直線l斜率存在時(shí),設(shè)直線l方程為y﹣=k(x﹣2),即x﹣y﹣2k+=0,所以圓心C到直線l的距離d==1,解得,k=﹣,直線l的方程為x+﹣3=0,綜上所述,直線l的方程為x﹣2=0或x+﹣3=0.21、(1)(2)【解析】(1)以為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,利用空間向量法可求得直線與平面所成角的正弦值;(2)求出平面的法向量,利用空間向量法可求得到平面的距離.【小問(wèn)1詳解】解:以為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的坐標(biāo)系則、、、、、、,所以,,設(shè)平面的一個(gè)法向量為,,,由,取,可得,所以,,直線與平面所成角的正弦為小問(wèn)2詳解】解:設(shè)平面的一個(gè)法向量,,,由,即,令,得,,所

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論