張家界市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第1頁
張家界市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第2頁
張家界市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第3頁
張家界市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第4頁
張家界市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

張家界市重點中學2026屆高二數(shù)學第一學期期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.曲線在點處的切線方程是()A. B.C. D.2.直線的傾斜角的取值范圍是()A. B.C. D.3.在區(qū)間內(nèi)隨機地取出兩個數(shù),則兩數(shù)之和小于的概率是()A. B.C. D.4.“”是“方程為雙曲線方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.直線過雙曲線:的右焦點,在第一、第四象限交雙曲線兩條漸近線分別于P,Q兩點,若∠OPQ=90°(O為坐標原點),則OPQ內(nèi)切圓的半徑為()A. B.C.1 D.6.阿基米德既是古希臘著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點,焦點、在軸上,橢圓的面積為,且離心率為,則的標準方程為()A. B.C. D.7.等比數(shù)列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.58.如圖,在長方體中,是線段上一點,且,若,則()A. B.C. D.9.設數(shù)列的前項和為,數(shù)列是公比為2的等比數(shù)列,且,則()A.255 B.257C.127 D.12910.已知數(shù)列滿足,則()A. B.1C.2 D.411.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.12.我國古代數(shù)學名著《算法統(tǒng)宗》記有行程減等問題:三百七十八里關,初行健步不為難次日腳痛減一半,六朝才得到其關.要見每朝行里數(shù),請公仔細算相還.意為:某人步行到378里的要塞去,第一天走路強壯有力,但把腳走痛了,次日因腳痛減少了一半,他所走的路程比第一天減少了一半,以后幾天走的路程都比前一天減少一半,走了六天才到達目的地.請仔細計算他每天各走多少路程?在這個問題中,第四天所走的路程為()A.96 B.48C.24 D.12二、填空題:本題共4小題,每小題5分,共20分。13.某高中高二年級學生在學習完成數(shù)學選擇性必修一后進行了一次測試,總分為100分.現(xiàn)用分層隨機抽樣方法從學生的數(shù)學成績中抽取一個樣本量為40的樣本,再將40個成績樣本數(shù)據(jù)分為6組:40,50),50,60),60,70),70,80),80,90),90,100,繪制得到如圖所示的頻率分布直方圖.(1)從所給的頻率分布直方圖中估計成績樣本數(shù)據(jù)眾數(shù),平均數(shù),中位數(shù);(2)在區(qū)間40,50)和90,100內(nèi)的兩組學生成績樣本數(shù)據(jù)中,隨機抽取兩個進調(diào)查,求調(diào)查對象來自不同分組的概率.14.如圖是用斜二測畫法畫出水平放置的正三角形ABC的直觀圖,其中,則三角形的面積為______.15.已知函數(shù)定義域為,值域為,則______16.設Sn是等差數(shù)列{an}的前n項和,若數(shù)列{an}滿足an+Sn=An2+Bn+C且A>0,則+B-C的最小值為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線,直線,直線(1)若與的傾斜角互補,求m的值;(2)當m為何值時,三條直線能圍成一個直角三角形18.(12分)在平面直角坐標系中,已知橢圓過點,且離心率.(1)求橢圓的方程;(2)直線的斜率為,直線l與橢圓交于兩點,求的面積的最大值.19.(12分)已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,求數(shù)列的前項和.20.(12分)在二項式展開式中,第3項和第4項的二項式系數(shù)比為.(1)求n的值及展開式中的常數(shù)項;(2)求展開式中系數(shù)最大的項是第幾項.21.(12分)已知橢圓長軸長為4,A,B分別為左、右頂點,P為橢圓上不同于A,B的動點,且點在橢圓上,其中e為橢圓的離心率(1)求橢圓的標準方程;(2)直線AP與直線(m為常數(shù))交于點Q,①當時,設直線OQ的斜率為,直線BP的斜率為.求證:為定值;②過Q與PB垂直的直線l是否過定點?如果是,請求出定點坐標;如果不是,請說明理由22.(10分)已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值時兩圓外切?(2)m取何值時兩圓內(nèi)切?(3)當m=45時,求兩圓公共弦所在直線的方程和公共弦的長

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求導,得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B2、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設直線的傾斜角為,則,解得.故選:A.3、C【解析】利用幾何概型的面積型,確定兩數(shù)之和小于的區(qū)域,進而根據(jù)面積比求概率.【詳解】由題意知:若兩個數(shù)分別為,則,如上圖示,陰影部分即為,∴兩數(shù)之和小于的概率.故選:C4、C【解析】先求出方程表示雙曲線時滿足的條件,然后根據(jù)“小推大”的原則進行判斷即可.【詳解】因方程為雙曲線方程,所以,所以“”是“方程為雙曲線方程”的充要條件.故選:C.5、B【解析】根據(jù)漸近線的對稱性,結(jié)合銳角三角函數(shù)定義、正切的二倍角公式、直角三角形內(nèi)切圓半徑公式進行求解即可.【詳解】由雙曲線標準方程可知:,雙曲線的漸近線方程為:,因此,因為∠OPQ=90°,所以三角形是直角三角形,,而,解得:,由雙曲線漸近線的對稱性可知:,于是有,在直角三角形中,,由勾股定理可知:,設OPQ內(nèi)切圓的半徑為,于是有:,即,故選:B【點睛】關鍵點睛:利用三角形內(nèi)切圓的性質(zhì)是解題的關鍵.6、A【解析】設橢圓方程為,解方程組即得解.【詳解】解:設橢圓方程為,由題意可知,橢圓的面積為,且、、均為正數(shù),即,解得,因為橢圓的焦點在軸上,所以的標準方程為.故選:A.7、C【解析】由等比數(shù)列性質(zhì)求出公比,將原式化簡后計算【詳解】設等比數(shù)列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C8、A【解析】將利用、、表示,再利用空間向量的加法可得出關于、、的表達式,進而可求得的值.【詳解】連接、,因,因為是線段上一點,且,則,因此,因此,.故選:A.9、C【解析】由題設可得,再由即可求值.【詳解】由數(shù)列是公比為2的等比數(shù)列,且,∴,即,∴.故選:C.10、B【解析】根據(jù)遞推式以及迭代即可.【詳解】由,得,,,,,,.故選:B11、A【解析】直線AC、BD與坐標軸重合時求出四邊形面積,與坐標軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當直線AC斜率存在且不0時,設其方程為,由消去y得:,設,則,,直線BD方程為,同理得:,則有,當且僅當,即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A12、C【解析】每天所走的里程構成公比為的等比數(shù)列,設第一天走了里,利用等比數(shù)列基本量代換,直接求解.【詳解】由題意可知:每天所走的里程構成公比為的等比數(shù)列.第一天走了里,第4天走了.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、(1)眾數(shù);平均數(shù),中位數(shù).(2).【解析】(1)按“眾數(shù),平均數(shù),中位數(shù)”的公式求解.(2)由頻率分布直方圖得到各區(qū)間的頻率,再用古典概型求解.【小問1詳解】眾數(shù)取頻率分布直方圖中最高矩形對應區(qū)間的中點75;平均數(shù);因為,所以中位數(shù)在區(qū)間上,且中位數(shù)【小問2詳解】由頻率分布直方圖得出在區(qū)間40,50)和90,100內(nèi)的成績樣本數(shù)據(jù)分別有4個和2個,從6個樣本選2個共有個結(jié)果,記事件A=“調(diào)查對象來自不同分組”,結(jié)果有所以.14、【解析】根據(jù)直觀圖和平面圖的關系可求出,進而利用面積公式可得三角形的面積【詳解】由已知可得則故答案為:.15、3【解析】根據(jù)定義域和值域,結(jié)合余弦函數(shù)的圖像與性質(zhì)即可求得的值,進而得解.【詳解】因為,由余弦函數(shù)的圖像與性質(zhì)可得,則,由值域為可得,所以,故答案為:3.【點睛】本題考查了余弦函數(shù)圖像與性質(zhì)的簡單應用,屬于基礎題.16、2【解析】因為{an}為等差數(shù)列,設公差為d,由an+Sn=An2+Bn+C,得a1+(n-1)d+na1+n(n-1)d=an+Sn=An2+Bn+C,即(d-A)n2+(a1+-B)n+(a1-d-C)=0對任意正整數(shù)n都成立所以(d-A)=0,a1+d-B=0,a1-d-C=0,所以A=d,B=a1+d,C=a1-d,所以3A-B+C=0.+B-C=+3A≥2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)0,,.【解析】(1)根據(jù)題意得,進而求解得答案;(2)根據(jù)題意,分別討論與垂直,與垂直,與垂直求解,并檢驗即可得答案【小問1詳解】解:因為與的傾斜角互補,所以,直線變形為,故所以,解得【小問2詳解】解:由題意,若和垂直可得:,解得,因為當時,,,,構不成三角形,當時,經(jīng)驗證符合題意;故;同理,若和垂直可得:,解得,舍去;若和垂直可得:,解得或,經(jīng)驗證符合題意;故m的值為:0,,.18、(1);(2)2.【解析】(1)由離心率,得到,再由點在橢圓上,得到,聯(lián)立求得,即可求得橢圓的方程.(2)設的方程為,聯(lián)立方程組,根據(jù)根系數(shù)的關系和弦長公式,以及點到直線的距離公式,求得,結(jié)合基本不等式,即可求解.【詳解】(1)由題意,橢圓的離心率,即,可得,又橢圓過點,可得,將代入,可得,故橢圓方程為.(2)設的方程為,設點,聯(lián)立方程組,消去y整理,得,所以,又直線與橢圓相交,所以,解得,則,點P到直線的距離,所以,當且僅當,即時,的面積取得最大值為2.【點睛】本題主要考查橢圓的標準方程的求解、及直線與圓錐曲線的位置關系的綜合應用,解答此類題目,通常聯(lián)立直線方程與橢圓方程,應用一元二次方程根與系數(shù)的關系進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.19、(1)(2)【解析】(Ⅰ)將數(shù)列中的項用和表示,根據(jù)等比數(shù)列的性質(zhì)可得到關于的一元二次方程可求得的值,即可得到數(shù)列的通項公式;(Ⅱ)根據(jù)(Ⅰ)可求得的通項公式,用分組求和法可得其前項和.試題解析:(Ⅰ)設等差數(shù)列的公差為,因,且,,成等比數(shù)列,即,,成等比數(shù)列,所以有,即,解得或(舍去),所以,,數(shù)列的通項公式為.(Ⅱ)由(Ⅰ)知,所以.點睛:本題主要考查了等差數(shù)列,等比數(shù)列的概念,以及數(shù)列的求和,屬于高考中??贾R點,難度不大;常見的數(shù)列求和的方法有公式法即等差等比數(shù)列求和公式,分組求和類似于,其中和分別為特殊數(shù)列,裂項相消法類似于,錯位相減法類似于,其中為等差數(shù)列,為等比數(shù)列等.20、(1),常數(shù)項為(2)5【解析】(1)求出二項式的通項公式,求出第3項和第4項的二項式系數(shù),再利用已知條件列方程求出的值,從而可求出常數(shù)項,(2)設展開式中系數(shù)最大的項是第項,則,從而可求出結(jié)果【小問1詳解】二項式展開式的通項公式為,因為第3項和第4項的二項式系數(shù)比為,所以,化簡得,解得,所以,令,得,所以常數(shù)項為【小問2詳解】設展開式中系數(shù)最大的項是第項,則,,解得,因為,所以,所以展開式中系數(shù)最大的項是第5項21、(1)(2)①證明見解析;②直線過定點;【解析】(1)依題意得到方程組,解得,即可求出橢圓方程;(2)①由(1)可得,,設,,表示出直線的方程,即可求出點坐標,從而得到、,即可求出;②在直線方程中令,即可得到的坐標,再求出直線的斜率,即可得到直線的方程,從而求出定點坐標;【小問1詳解】解:依題意可得,即,解得或(舍去),所以,所以橢圓方程為【小問2詳解】解:①由(1)可得,,設,,則直線的方程為,令則,所以,,所以,又點在橢圓上,所以,即,所以,即為定值;②因為直線的方程為,令則,因為,所以,所以直線的方程為,即又,所以,令,解得,所以直線過定點;22、(1)(2)(3)直線方程為4x+3y-23=0,弦長為【解析】(1)先把兩個圓的方程化為標準形式,求出圓心和半徑,再根據(jù)兩圓的圓心距等于兩圓的半徑之和,求得m的值;(2)由兩圓的圓心距等于兩圓的半徑之差為,求得m的值.(3)當m=45時,把兩個圓的方程相減,可得公共弦所在的直線方程.求出第一個圓的圓心(1,3)到公共弦所在的直線的距離d,再利用弦長公式求得弦長試題解析:(1)由已知可得兩個圓的方程分別為(x-1)2+(y-3)2=11、(x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論