黑龍江省哈爾濱十九中2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
黑龍江省哈爾濱十九中2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
黑龍江省哈爾濱十九中2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
黑龍江省哈爾濱十九中2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
黑龍江省哈爾濱十九中2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省哈爾濱十九中2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若在1和16中間插入3個(gè)數(shù),使這5個(gè)數(shù)成等比數(shù)列,則公比為()A. B.2C. D.42.直線的傾斜角為()A. B.C. D.3.已知直四棱柱的棱長均為,則直線與側(cè)面所成角的正切值為()A. B.C. D.4.函數(shù)的導(dǎo)數(shù)記為,則等于()A. B.C. D.5.已知圓,則圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為()A.-1 B.C.+1 D.66.命題“對(duì)任意,都有”的否定是()A.對(duì)任意,都有 B.存在,使得C.對(duì)任意,都有 D.存在,使得7.某地區(qū)高中分三類,A類學(xué)校共有學(xué)生2000人,B類學(xué)校共有學(xué)生3000人,C類學(xué)校共有學(xué)生4000人,若采取分層抽樣的方法抽取900人,則A類學(xué)校中的學(xué)生甲被抽到的概率()A. B.C. D.8.若函數(shù)有兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.9.已知長方體的底面ABCD是邊長為4的正方形,長方體的高為,則與對(duì)角面夾角的正弦值等于()A. B.C. D.10.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交11.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離12.若雙曲線一條漸近線被圓所截得的弦長為,則雙曲線的離心率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn),若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是___________.14.2021年7月24日,在東京奧運(yùn)會(huì)女子10米氣步槍決賽中,中國選手楊倩以251.8環(huán)的總成績奪得金牌,為中國代表團(tuán)摘得本屆奧運(yùn)會(huì)首金.已知楊倩其中5次射擊命中的環(huán)數(shù)如下:10.8,10.6,10.6,10.7,9.8,則這組數(shù)據(jù)的方差為______15.已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)求的單調(diào)區(qū)間;16.拋物線焦點(diǎn)坐標(biāo)是,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:()的焦點(diǎn)坐標(biāo)為,長軸長是短軸長的2倍(1)求橢圓的方程;(2)已知直線不過點(diǎn)且與橢圓交于兩點(diǎn),從下面①②中選取一個(gè)作為條件,證明另一個(gè)成立.①直線的斜率分別為,則;②直線過定點(diǎn).18.(12分)已知函數(shù).(1)當(dāng)時(shí),證明:函數(shù)圖象恒在函數(shù)的圖象的下方;(2)討論方程的根的個(gè)數(shù).19.(12分)已知數(shù)列,若_________________(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和從下列三個(gè)條件中任選一個(gè)補(bǔ)充在上面的橫線上,然后對(duì)題目進(jìn)行求解①;②,,;③,點(diǎn),在斜率是2的直線上20.(12分)(1)已知集合,.:,:,并且是的充分條件,求實(shí)數(shù)的取值范圍(2)已知:,,:,,若為假命題,求實(shí)數(shù)的取值范圍21.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無實(shí)根.(1)若p為真命題,求實(shí)數(shù)m的取值范圍;(2)若為假命題,為真命題,求實(shí)數(shù)m的取值范圍22.(10分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知.(1)求B(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請(qǐng)說明理由.在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在橫線上.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)等比數(shù)列的通項(xiàng)得:,從而可求出.【詳解】解:成等比數(shù)列,∴根據(jù)等比數(shù)列的通項(xiàng)得:,,故選:A.2、D【解析】由直線斜率概念可寫出傾斜角的正切值,進(jìn)而可求出傾斜角.【詳解】因?yàn)橹本€的斜率為,所以傾斜角.故選D【點(diǎn)睛】本題主要考查直線的傾斜角,由斜率的概念,即可求出結(jié)果.3、D【解析】根據(jù)題意把直線與側(cè)面所成角的正切值轉(zhuǎn)化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點(diǎn)設(shè)為點(diǎn),連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側(cè)面所成角的正切值為.故選:D.4、D【解析】求導(dǎo)后代入即可.【詳解】,.故選:D.5、A【解析】先求出圓心和半徑,求出圓心到坐標(biāo)原點(diǎn)的距離,從而求出圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點(diǎn)的距離為,故圓上的點(diǎn)到坐標(biāo)原點(diǎn)的距離最小值為.故選:A6、B【解析】根據(jù)全稱命題的否定是特稱命題形式,可判斷正確答案.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以命題“對(duì)任意,都有”的否定是“存在,使得”故選:B.7、D【解析】利用抽樣的性質(zhì)求解【詳解】所有學(xué)生數(shù)為,所以所求概率為.故選:D8、D【解析】計(jì)算,然后等價(jià)于在(0,+∞)由2個(gè)不同的實(shí)數(shù)根,然后計(jì)算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個(gè)不同的極值點(diǎn),則在(0,+∞)由2個(gè)不同的實(shí)數(shù)根,故,解得:,故選:D.【點(diǎn)睛】本題考查根據(jù)函數(shù)極值點(diǎn)個(gè)數(shù)求參,考查計(jì)算能力以及思維轉(zhuǎn)變能力,屬基礎(chǔ)題.9、C【解析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長為4的正方形,,∴,,,因?yàn)?,且,所以平面,∴,平面的法向量,∴與對(duì)角面所成角的正弦值為故選:C.10、B【解析】以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,根據(jù)向量垂直的坐標(biāo)表示求出,再利用向量的坐標(biāo)運(yùn)算可得,根據(jù)共線定理即可判斷.【詳解】設(shè)正方體的棱長為1.以為坐標(biāo)原點(diǎn),所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則.設(shè),則,取.,.故選:B【點(diǎn)睛】本題考查了空間向量垂直的坐標(biāo)表示、空間向量的坐標(biāo)表示、空間向量共線定理,屬于基礎(chǔ)題.11、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對(duì)圓,其圓心,半徑;對(duì)圓,其圓心,半徑;又,故兩圓外切.故選:A.12、A【解析】根據(jù)(為弦長,為圓半徑,為圓心到直線的距離),求解出的關(guān)系式,結(jié)合求解出離心率的值.【詳解】取的一條漸近線,因?yàn)椋橄议L,為圓半徑,為圓心到直線的距離),其中,所以,所以,所以,所以,所以,故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:解答本題的關(guān)鍵是利用幾何法表示出圓的半徑、圓心到直線的距離、半弦長之間的關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】計(jì)算點(diǎn)漸近線的距離,從而得,由勾股定理計(jì)算,由雙曲線定義列式,從而計(jì)算得,即可計(jì)算出離心率.【詳解】設(shè)雙曲線右焦點(diǎn)為,因?yàn)榈闹悬c(diǎn)在雙曲線的漸近線上,由可知,,因?yàn)闉橹悬c(diǎn),所以,所以,即垂直平分線段,所以到漸近線的距離為,可得,所以,由雙曲線定義可知,,即,所以,所以.故答案為:【點(diǎn)睛】雙曲線的離心率是橢圓最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)14、128【解析】先求均值,再由方差公式計(jì)算【詳解】由已知,所以,故答案為:15、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導(dǎo)后,令求得兩根,分別在、和三種情況下根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;②當(dāng)時(shí),在上恒成立,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;③當(dāng)時(shí),若和時(shí),;若時(shí),;的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;綜上所述:當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求解曲線在某一點(diǎn)處的切線方程、利用導(dǎo)數(shù)討論含參數(shù)函數(shù)的單調(diào)區(qū)間的問題,屬于??碱}型.16、2【解析】根據(jù)拋物線的幾何性質(zhì)直接求解可得.【詳解】的焦點(diǎn)坐標(biāo)為,即.故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)由條件可得,解出即可;(2)選①證②,當(dāng)直線的斜率存在時(shí),設(shè):,,然后聯(lián)立直線與橢圓的方程消元,然后韋達(dá)定理可得,,然后由可算出,即可證明,選②證①,設(shè):,,然后聯(lián)立直線與橢圓的方程消元,然后韋達(dá)定理可得,,然后可算出.【小問1詳解】由條件可得,解得所以橢圓方程為【小問2詳解】選①證②:當(dāng)直線的斜率存在時(shí),設(shè):,由得,則,由得即,即所以代入所以所以解得:(舍去),所以直線過定點(diǎn)當(dāng)直線斜率不存在時(shí),設(shè):所以,由得所以,即,解得所以直線(不符合題意,舍去)綜上:直線過定點(diǎn)選②證①:由題意直線的斜率存在,設(shè):由得則,所以.18、(1)證明見解析(2)答案見解析【解析】(1)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷單調(diào)性,并求出函數(shù)的最大值小于零,即,即可得證;(2)將方程根的個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象與交點(diǎn)的問題,大致畫出函數(shù)的圖象,即可求解.【小問1詳解】設(shè),其中,則,在區(qū)間上,單調(diào)遞減,又∵,即時(shí),,∴,∴在區(qū)間上函數(shù)的圖象恒在函數(shù)的圖象的下方.【小問2詳解】由得,即,令,則,令,得,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴在處取得最小值,∴,又∵當(dāng)時(shí),,當(dāng)時(shí),,有零點(diǎn)存在性定理可知函數(shù)有唯一的零點(diǎn),∴的大致圖象如圖所示,∴當(dāng)時(shí),方程的根的個(gè)數(shù)為0;當(dāng)或時(shí),方程的根的個(gè)數(shù)為1;當(dāng)時(shí),方程的根的個(gè)數(shù)為2.19、答案見解析.【解析】(1)若選①,根據(jù)通項(xiàng)公式與前項(xiàng)和的關(guān)系求解通項(xiàng)公式即可;若選②,根據(jù)可得數(shù)列為等差數(shù)列,利用基本量法求解通項(xiàng)公式即可;若選③,根據(jù)兩點(diǎn)間的斜率公式可得,可得數(shù)列為等差數(shù)列進(jìn)而求得通項(xiàng)公式;(2)利用裂項(xiàng)相消求和即可【詳解】解:(1)若選①,由,所以當(dāng),,兩式相減可得:,而在中,令可得:,符合上式,故若選②,由(,)可得:數(shù)列為等差數(shù)列,又因?yàn)?,,所以,即,所以若選③,由點(diǎn),在斜率是2的直線上得:,即,所以數(shù)列為等差數(shù)列且(2)由(1)知:,所以20、(1);(2)【解析】(1)由二次函數(shù)的性質(zhì),求得,又由,求得集合,根據(jù)命題是命題的充分條件,所以,列出不等式,即可求解(2)依題意知,均為假命題,分別求得實(shí)數(shù)的取值范圍,即可求解【詳解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因?yàn)槊}是命題的充分條件,所以,則,解得或,∴實(shí)數(shù)的取值范圍是.(2)依題意知,,均為假命題,當(dāng)是假命題時(shí),恒成立,則有,當(dāng)是假命題時(shí),則有,或.所以由均為假命題,得,即.【點(diǎn)睛】本題主要考查了復(fù)合命題的真假求參數(shù),以及充要條件的應(yīng)用,其中解答中正確得出集合間的關(guān)系,列出不等式,以及根據(jù)復(fù)合命題的真假關(guān)系求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題21、(1)(2)【解析】(1)解一元二次不等式,即可求得當(dāng)為真命題時(shí)的取值范圍;(2)先求得命題為真命題時(shí)的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當(dāng)為真命題時(shí),解不等式可得;(2)當(dāng)為真命題時(shí),由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點(diǎn)睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復(fù)合命題真假判斷命題真假,并求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論