版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海華東師大三附中2026屆高三數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.22.設(shè)點(diǎn)是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn),若,則()A. B. C. D.3.在中,為上異于,的任一點(diǎn),為的中點(diǎn),若,則等于()A. B. C. D.4.達(dá)芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來讓無數(shù)觀賞者人迷.某業(yè)余愛好者對(duì)《蒙娜麗莎》的縮小影像作品進(jìn)行了粗略測(cè)繪,將畫中女子的嘴唇近似看作一個(gè)圓弧,在嘴角處作圓弧的切線,兩條切線交于點(diǎn),測(cè)得如下數(shù)據(jù):(其中).根據(jù)測(cè)量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角大約等于()A. B. C. D.5.為得到y(tǒng)=sin(2x-πA.向左平移π3個(gè)單位B.向左平移πC.向右平移π3個(gè)單位D.向右平移π6.已知等差數(shù)列的前項(xiàng)和為,,,則()A.25 B.32 C.35 D.407.在區(qū)間上隨機(jī)取一個(gè)數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.118.如圖,正四面體的體積為,底面積為,是高的中點(diǎn),過的平面與棱、、分別交于、、,設(shè)三棱錐的體積為,截面三角形的面積為,則()A., B.,C., D.,9.設(shè)為銳角,若,則的值為()A. B. C. D.10.大衍數(shù)列,米源于我國(guó)古代文獻(xiàn)《乾坤譜》中對(duì)易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國(guó)傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為()A. B. C. D.11.已知函數(shù),其中,,其圖象關(guān)于直線對(duì)稱,對(duì)滿足的,,有,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,則函數(shù)的單調(diào)遞減區(qū)間是()A. B.C. D.12.已知的展開式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點(diǎn),雙曲線的漸近線上存在點(diǎn)滿足,則的最大值為________.14.在正奇數(shù)非減數(shù)列中,每個(gè)正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對(duì)所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.15.曲線y=e-5x+2在點(diǎn)(0,3)處的切線方程為________.16.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:和拋物線:,為坐標(biāo)原點(diǎn).(1)已知直線和圓相切,與拋物線交于兩點(diǎn),且滿足,求直線的方程;(2)過拋物線上一點(diǎn)作兩直線和圓相切,且分別交拋物線于兩點(diǎn),若直線的斜率為,求點(diǎn)的坐標(biāo).18.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長(zhǎng).19.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)在中國(guó),不僅是購(gòu)物,而且從共享單車到醫(yī)院掛號(hào)再到公共繳費(fèi),日常生活中幾乎全部領(lǐng)域都支持手機(jī)支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國(guó)人民大學(xué)和法國(guó)調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機(jī)抽取了60名,統(tǒng)計(jì)他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機(jī)支付族”,其他為“非手機(jī)支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補(bǔ)充完整,并判斷有多大的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān)?(2)用樣本估計(jì)總體,若從騰訊服務(wù)的用戶中隨機(jī)抽取3位女性用戶,這3位用戶中“手機(jī)支付族”的人數(shù)為,求隨機(jī)變量的期望和方差;(3)某商場(chǎng)為了推廣手機(jī)支付,特推出兩種優(yōu)惠方案,方案一:手機(jī)支付消費(fèi)每滿1000元可直減100元;方案二:手機(jī)支付消費(fèi)每滿1000元可抽獎(jiǎng)2次,每次中獎(jiǎng)的概率同為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)一次打9折,中獎(jiǎng)兩次打8.5折.如果你打算用手機(jī)支付購(gòu)買某樣價(jià)值1200元的商品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.82821.(12分)某公司為了鼓勵(lì)運(yùn)動(dòng)提高所有用戶的身體素質(zhì),特推出一款運(yùn)動(dòng)計(jì)步數(shù)的軟件,所有用戶都可以通過每天累計(jì)的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計(jì)了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運(yùn)動(dòng)達(dá)人”,步數(shù)在8000以下的為“非運(yùn)動(dòng)達(dá)人”,采用按性別分層抽樣的方式抽取了100個(gè)用戶,得到如下列聯(lián)表:運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人總計(jì)男3560女26總計(jì)100(1)(i)將列聯(lián)表補(bǔ)充完整;(ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?(2)將頻率視作概率,從該公司的所有人“運(yùn)動(dòng)達(dá)人”中任意抽取3個(gè)用戶,求抽取的用戶中女用戶人數(shù)的分布列及期望.附:22.(10分)如圖,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點(diǎn),已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力.2、B【解析】∵∵∴∵,∴∴故選B點(diǎn)睛:本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、長(zhǎng)軸、短軸等橢圓的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.3、A【解析】
根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.4、A【解析】
由已知,設(shè).可得.于是可得,進(jìn)而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角為.則,.故選:A.【點(diǎn)睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.5、D【解析】試題分析:因?yàn)?,所以為得到y(tǒng)=sin(2x-π3)的圖象,只需要將考點(diǎn):三角函數(shù)的圖像變換.6、C【解析】
設(shè)出等差數(shù)列的首項(xiàng)和公差,即可根據(jù)題意列出兩個(gè)方程,求出通項(xiàng)公式,從而求得.【詳解】設(shè)等差數(shù)列的首項(xiàng)為,公差為,則,解得,∴,即有.故選:C.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式的求法和應(yīng)用,涉及等差數(shù)列的前項(xiàng)和公式的應(yīng)用,屬于容易題.7、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長(zhǎng)度以及使不等式成立的的范圍區(qū)間長(zhǎng)度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長(zhǎng)度為6,使得成立的的范圍為,區(qū)間長(zhǎng)度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點(diǎn)睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識(shí)點(diǎn)有長(zhǎng)度型幾何概型概率公式,等差數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題目.8、A【解析】
設(shè),取與重合時(shí)的情況,計(jì)算出以及的值,利用排除法可得出正確選項(xiàng).【詳解】如圖所示,利用排除法,取與重合時(shí)的情況.不妨設(shè),延長(zhǎng)到,使得.,,,,則,由余弦定理得,,,又,,當(dāng)平面平面時(shí),,,排除B、D選項(xiàng);因?yàn)?,,此時(shí),,當(dāng)平面平面時(shí),,,排除C選項(xiàng).故選:A.【點(diǎn)睛】本題考查平行線分線段成比例定理、余弦定理、勾股定理、三棱錐的體積計(jì)算公式、排除法,考查了空間想象能力、推理能力與計(jì)算能力,屬于難題.9、D【解析】
用誘導(dǎo)公式和二倍角公式計(jì)算.【詳解】.故選:D.【點(diǎn)睛】本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.10、B【解析】
直接代入檢驗(yàn),排除其中三個(gè)即可.【詳解】由題意,排除D,,排除A,C.同時(shí)B也滿足,,,故選:B.【點(diǎn)睛】本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時(shí)可代入檢驗(yàn),利用排除法求解.11、B【解析】
根據(jù)已知得到函數(shù)兩個(gè)對(duì)稱軸的距離也即是半周期,由此求得的值,結(jié)合其對(duì)稱軸,求得的值,進(jìn)而求得解析式.根據(jù)圖像變換的知識(shí)求得的解析式,再利用三角函數(shù)求單調(diào)區(qū)間的方法,求得的單調(diào)遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關(guān)于直線對(duì)稱,對(duì)滿足的,,有,∴.再根據(jù)其圖像關(guān)于直線對(duì)稱,可得,.∴,∴.將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度得到函數(shù)的圖像.令,求得,則函數(shù)的單調(diào)遞減區(qū)間是,,故選B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖像與性質(zhì)求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調(diào)區(qū)間的求法,屬于中檔題.12、A【解析】
先求的展開式,再分類分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開式的常數(shù)項(xiàng),從而求出的值.【詳解】展開式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開式中的系數(shù)問題,其中對(duì)所取的項(xiàng)要進(jìn)行分類討論,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),由可得,整理得,即點(diǎn)在以為圓心,為半徑的圓上.又點(diǎn)到雙曲線的漸近線的距離為,所以當(dāng)雙曲線的漸近線與圓相切時(shí),取得最大值,此時(shí),解得.14、2【解析】
將已知數(shù)列分組為(1),,共個(gè)組.設(shè)在第組,,則有,即.注意到,解得.所以,.因此,.故.15、.【解析】
先利用導(dǎo)數(shù)求切線的斜率,再寫出切線方程.【詳解】因?yàn)閥′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點(diǎn)睛】(1)本題主要考查導(dǎo)數(shù)的幾何意義和函數(shù)的求導(dǎo),意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.(2)函數(shù)在點(diǎn)處的導(dǎo)數(shù)是曲線在處的切線的斜率,相應(yīng)的切線方程是16、【解析】
根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過定點(diǎn),直線繞定點(diǎn)旋轉(zhuǎn)與可行域有交點(diǎn)即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點(diǎn),由,解得,由,解得,要使,則與可行域有交點(diǎn),當(dāng)時(shí),滿足條件,當(dāng)時(shí),直線得斜率應(yīng)該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,還考查了轉(zhuǎn)化運(yùn)算求解的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點(diǎn),且滿足,只需數(shù)量積為0,要聯(lián)立方程組設(shè)而不求,利用坐標(biāo)關(guān)系及根與系數(shù)關(guān)系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標(biāo)滿足的要求,再利用兩直線與圓相切,求出點(diǎn)的坐標(biāo).試題解析:(1)解:設(shè),,,由和圓相切,得.∴.由消去,并整理得,∴,.由,得,即.∴.∴,∴,∴.∴.∴或(舍).當(dāng)時(shí),,故直線的方程為.(2)設(shè),,,則.∴.設(shè),由直線和圓相切,得,即.設(shè),同理可得:.故是方程的兩根,故.由得,故.同理,則,即.∴,解或.當(dāng)時(shí),;當(dāng)時(shí),.故或.18、(1);(2).【解析】
(1)在三角形中,利用余弦定理列方程,解方程求得的長(zhǎng),進(jìn)而由三角形的面積公式求得三角形的面積.(2)利用誘導(dǎo)公式求得,進(jìn)而求得,利用兩角差的正弦公式,求得,在三角形中利用正弦定理求得,在三角形中利用余弦定理求得的長(zhǎng).【詳解】(1)在中,,解得,.(2)在中,,..【點(diǎn)睛】本小題主要考查正弦定理、余弦定理解三角形,考查三角形的面積公式,屬于中檔題.19、(1)見解析;(2)【解析】
(Ⅰ)證明:過點(diǎn)作于點(diǎn),∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點(diǎn)是的中點(diǎn),連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過作于點(diǎn),則∴是與平面所成角∴,∴與平面所成角的正弦值為考點(diǎn):面面垂直的性質(zhì)定理;線面平行的判定定理;線面垂直的性質(zhì)定理;直線與平面所成的角.點(diǎn)評(píng):本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標(biāo)系,正確求解平面的一個(gè)法向量.注意計(jì)算要仔細(xì)、認(rèn)真.≌20、(1)列聯(lián)表見解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】
(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨(dú)立性檢驗(yàn)得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,知服從二項(xiàng)分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設(shè)實(shí)際付款元,,則的取值為1200,1080,1020,求出實(shí)際付款的期望,再比較兩個(gè)方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯(lián)列表:,所以,有99%的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān);(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,,;(3)若選方案一,則需付款元若選方案二,設(shè)實(shí)際付款元,,則的取值為1200,1080,1020,,,,選擇第二種優(yōu)惠方案更劃算【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),二項(xiàng)分布的期
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年浙江尚和服務(wù)外包有限公司(派駐人保財(cái)險(xiǎn)洞頭支公司)招聘?jìng)淇碱}庫(kù)及一套完整答案詳解
- 2026年松子炒貨機(jī)維修(加工機(jī)調(diào)試技術(shù))試題及答案
- 2025年中職茶葉生產(chǎn)與應(yīng)用(茶葉初加工技術(shù))試題及答案
- 2025年中職園林(苗木培育基礎(chǔ))試題及答案
- 2025年高職機(jī)械電子工程技術(shù)(機(jī)電一體化系統(tǒng)設(shè)計(jì))試題及答案
- 2025年中職人工智能技術(shù)應(yīng)用(人工智能應(yīng)用)試題及答案
- 2025年高職旅游管理(旅游文化學(xué))試題及答案
- 2025年高職生物工程(發(fā)酵技術(shù))試題及答案
- 2025年中職建筑工程施工(鋼筋工程施工)試題及答案
- 2026年冷鏈物流(生鮮冷鏈管理)試題及答案
- 2026年酒店住宿預(yù)訂合同
- 選舉法知識(shí)課件
- 2026云南省產(chǎn)品質(zhì)量監(jiān)督檢驗(yàn)研究院招聘編制外人員2人筆試備考題庫(kù)及答案解析
- 2026年1月浙江省高考首考選考地理試卷試題(含答案)
- 人教版PEP五年級(jí)英語上冊(cè)“閱讀理解”專項(xiàng)練習(xí)(含答案)
- 中學(xué)生網(wǎng)絡(luò)社交行為調(diào)查報(bào)告
- 2025-2026學(xué)年大象版小學(xué)科學(xué)五年級(jí)上冊(cè)期末復(fù)習(xí)卷及答案
- 精益工程師考試試題及答案2
- 道路清掃保潔服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 2025年牛肉醬行業(yè)分析報(bào)告及未來發(fā)展趨勢(shì)預(yù)測(cè)
- 2024腦動(dòng)靜脈畸形多學(xué)科診療專家共識(shí)
評(píng)論
0/150
提交評(píng)論