2026屆連云港市重點中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
2026屆連云港市重點中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
2026屆連云港市重點中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
2026屆連云港市重點中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
2026屆連云港市重點中學高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆連云港市重點中學高二上數(shù)學期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在棱長為1的正方體中,M是的中點,則點到平面MBD的距離是()A. B.C. D.2.某大學數(shù)學系共有本科生1500人,其中一、二、三、四年級的人數(shù)比為,要用分層隨機抽樣的方法從中抽取一個容量為300的樣本,則應抽取的三年級學生的人數(shù)為()A.20 B.40C.60 D.803.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項和Sn滿足,則實數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)4.已知兩條平行直線:與:間的距離為3,則()A.25或-5 B.25C.5 D.21或-95.設滿足則的最大值為A. B.2C.4 D.166.設,則有()A. B.C. D.7.如圖,在四面體中,,,兩兩垂直,已知,,則直線與平面所成角的正弦值為()A. B.C. D.8.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點,BE,DH的交點為G,則的化簡結果為()A. B.C. D.9.設是橢圓的上頂點,若上的任意一點都滿足,則的離心率的取值范圍是()A. B.C. D.10.設函數(shù)是奇函數(shù)的導函數(shù),,當時,,則使得成立的的取值范圍是A. B.C D.11.當實數(shù),m變化時,的最大值是()A.3 B.4C.5 D.612.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數(shù)a的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知存在正數(shù)使不等式成立,則的取值范圍_____14.若函數(shù)在x=1處的切線與直線y=kx平行,則實數(shù)k=___________.15.已知曲線表示焦點在軸上的雙曲線,則符合條件的的一個整數(shù)值為______.16.已知正方體的棱長為2,E、F分別是棱、的中點,點P為底面ABCD內(包括邊界)的一動點,若直線與平面BEF無公共點,則點P的軌跡長度為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)f(x)的單調區(qū)間;(2)若f(x)≥0對定義域內的任意x恒成立,求實數(shù)a的取值范圍.18.(12分)已知的內角的對邊分別為a,,若向量,且(1)求角的值;(2)已知的外接圓半徑為,求周長的最大值.19.(12分)已知各項為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和.20.(12分)已知數(shù)列為各項均為正數(shù)的等比數(shù)列,若(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和21.(12分)已知向量,.(1)計算和;(2)求.22.(10分)冬奧會的全稱是冬季奧林匹克運動會,是世界規(guī)模最大的冬季綜合性運動會,每四年舉辦一屆.第24屆冬奧會將于2022年在中國北京和張家口舉行.為了弘揚奧林匹克精神,增強學生的冬奧會知識,廣安市某中學校從全校隨機抽取50名學生參加冬奧會知識競賽,并根據(jù)這50名學生的競賽成績,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間(1)求頻率分布直方圖中a的值:(2)求這50名學生競賽成績的眾數(shù)和中位數(shù).(結果保留一位小數(shù))

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】等體積法求解點到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點E,連接ME,由三線合一得:ME⊥BD,則,故,設到平面MBD的距離是,則,解得:,故點到平面MBD的距離是.故選:A2、C【解析】根據(jù)給定條件利用分層抽樣的抽樣比直接計算作答.【詳解】依題意,三年級學生的總人數(shù)為,從1500人中用分層隨機抽樣抽取容量為300的樣本的抽樣比為,所以應抽取的三年級學生的人數(shù)為.故選:C3、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項公式.再根據(jù)新定義的意義,代入解不等式即可求得實數(shù)的取值范圍.【詳解】因為所以當時,兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當時,所以,則由“差半遞增”數(shù)列的定義可知化簡可得解不等式可得即實數(shù)的取值范圍為故選:A.4、A【解析】根據(jù)平行直線的性質,結合平行線間距離公式進行求解即可.【詳解】因為直線:與:平行,所以有,因為兩條平行直線:與:間距離為3,所以,或,當時,;當時,,故選:A5、C【解析】可行域如圖,則直線過點A(0,1)取最大值2,則的最大值為4,選C.點睛:線性規(guī)劃的實質是把代數(shù)問題幾何化,即數(shù)形結合的思想.需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大或最小值會在可行域的端點或邊界上取得.6、A【解析】利用作差法計算與比較大小即可求解.【詳解】因為,,所以,所以,故選:A.7、D【解析】利用三線垂直建立空間直角坐標系,將線面角轉化為直線的方向向量和平面的法向量所成的角,再利用空間向量進行求解.【詳解】以,,所在直線為軸,軸,軸建立空間直角坐標系(如圖所示),則,,,,,設平面的一個法向量為,則,即,令,則,,所以平面的一個法向量為;設直線與平面所成角為,則,即直線與平面所成角的正弦值為.故選:D.8、D【解析】依題意可得為的重心,由三角形重心的性質可知,由中位線定理可知,再利用向量的加法運算法則即可求出結果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點,,,故選:D9、C【解析】設,由,根據(jù)兩點間的距離公式表示出,分類討論求出的最大值,再構建齊次不等式,解出即可【詳解】設,由,因為,,所以,因為,當,即時,,即,符合題意,由可得,即;當,即時,,即,化簡得,,顯然該不等式不成立故選:C【點睛】本題解題關鍵是如何求出的最大值,利用二次函數(shù)求指定區(qū)間上的最值,要根據(jù)定義域討論函數(shù)的單調性從而確定最值10、B【解析】構造函數(shù),可知函數(shù)為奇函數(shù),利用導數(shù)分析出函數(shù)在上的單調性,并得出,然后分別在和解不等式,由此可得出不等式的解集.【詳解】構造函數(shù),該函數(shù)的定義域為,由于函數(shù)為上的奇函數(shù),則,所以,函數(shù)為上的奇函數(shù),且,,.當時,,此時,函數(shù)單調遞增,由,可得,解得;當時,則函數(shù)單調遞增,由,可得,解得.綜上所述,使得成立的的取值范圍是.故選:B.【點睛】本題考查利用函數(shù)的單調性求解函數(shù)不等式,根據(jù)導數(shù)不等式的結構構造合適的函數(shù)是解題的關鍵,考查分析問題和解決問題的能力,屬于中等題.11、D【解析】根據(jù)點到直線的距離公式可知可以表示單位圓上點到直線的距離,利用圓的性質結合圖形即得.【詳解】由題可知,可以表示單位圓上點到直線的距離,設,因直線,即表示恒過定點,根據(jù)圓的性質可得.故選:D.12、D【解析】根據(jù)圓的割線定理,結合圓的性質進行求解即可.【詳解】圓的圓心坐標為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、(1,1)【解析】存在性問題轉化為最大值,運用均值不等式,求出的最大值,轉化成解對數(shù)不等式,進而解出【詳解】解:∵,由于,則,∴,當且僅當時,即:時,∴有最大值,又存在正數(shù)使不等式成立,則,即,∴,即的取值范圍為:.故答案為:【點睛】本題考查均值不等式的應用和對數(shù)不等式的解法,還涉及存在性問題,考查化簡計算能力14、2【解析】由題可求函數(shù)的導數(shù),再利用導數(shù)的幾何意義即求.【詳解】∵,∴,,又函數(shù)在x=1處的切線與直線y=kx平行,∴.故答案為:2.15、.(答案不唯一)【解析】給出一個符合條件的值即可.【詳解】當時,曲線表示焦點在軸上的雙曲線,故答案為:.(答案不唯一)16、【解析】取BC中點G,證明平面平面確定點P的軌跡,再計算作答.【詳解】在正方體中,取BC中點G,連接,如圖,因E、F分別是棱、的中點,則,而平面,平面,則有平面,因,則,而,則有四邊形為平行四邊形,有,又平面,平面,于是得平面,而,平面,因此,平面平面,即線段AG是點P在底面ABCD內的軌跡,,所以點P的軌跡長度為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)【解析】(1)求導數(shù),然后對進行分類討論,利用導數(shù)的正負,可得函數(shù)的單調區(qū)間;(2)利用(1)中函數(shù)的單調性,求得函數(shù)在處取得最小值,即可求實數(shù)的取值范圍.【小問1詳解】解:求導可得①時,令可得,由于知;令,得∴函數(shù)在上單調遞減,在上單調遞增;②時,令可得;令,得或,由于知或;∴函數(shù)在上單調遞減,在上單調遞增;③時,,函數(shù)在上單調遞增;④時,令可得;令,得或,由于知或∴函數(shù)在上單調遞減,在上單調遞增;【小問2詳解】由(1)時,,(不符合,舍去)當時,在上單調遞減,在上單調遞增,故函數(shù)在處取得最小值,所以函數(shù)對定義域內的任意x恒成立時,只需要即可∴.綜上,.18、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函數(shù)恒等變換公可得,從而可求出角的值,(2)利用正弦定理求出,再利用余弦定理結合基本不等式可得的最大值為4,從而可求出三角形周長的最大值【小問1詳解】由,得

,由正弦定理,得,即.在中,由,得.又,所以.【小問2詳解】根據(jù)題意,得,由余弦定理,得,即,整理得,當且僅當時,取等號,所以的最大值為所以.所以的周長的最大值為

.19、(1);(2)【解析】(1)根據(jù)條件求出即可;(2),然后利用等差數(shù)列的求和公式求出答案即可.【詳解】(1)且,,(2)20、(1)(2)【解析】(1)利用等比數(shù)列通項公式列出方程組,可求解,,從而寫出;(2)化簡數(shù)列,裂項相消法求和即可.【小問1詳解】設數(shù)列的公比為,∵,∴,即①∵,∴②②÷①,解得∴∴【小問2詳解】∵,∴∴∴21、(1),;(2).【解析】(1)利用空間向量的坐標運算可求得的坐標,利用向量的模長公式可求得的值;(2)計算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論