版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
January2026
Srinivasan(Cheenu)
Venkatachary
8min.
BuildingPersonalIntelligence:
Asteptowards
trulypersonalAI
1IntroductionPage03
2HowPersonalIntelligenceworksPage05
3ResponsibleDevelopmentPage08
4ResearchDirectionsPage12
5VisionfortheFuturePage13
03BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
Introduction
Makingourproductsmorehelpfulbymakingthempersonal
AtGoogle,we’vespentyearsrefiningourproductstobenotjusthelpful,buthelpfultoyou.
Welearnedearlyonthatpersonalcontextmatters:when
someonesearchesfor“runningshoes”,theyaren’tusually
lookingforalistofgenericbestsellers,butforthespecific
brandsandstylestheyprefer.Thatinsight—thatyourhistoryandpreferencesshouldinformyourresults—enhanced
GoogleSearch,andintheyearssince,we’vebroughtthatsamelevelofpersonalizationtomanyofourproducts.
Interactingwithyourpersonalinformationhashistoricallymeantnavigatingindependentproductexperiences:
searchingforyourflightreservationrequiredopeningGmail,whilefindingamemorymeantsearchingorscrollingthrough
GooglePhotos.
Inthelastfewyears,webeganbridgingthesegapswith
featuresthatallowedforexplicitinformationretrievalacrossproductswithyourpermission—liketagging@GmailtofindflightdetailsintheGeminiapp.Wealsointroducedfeaturesthatpersonalizeyourexperienceinaspecificproduct—
likeusingyourpastchatsintheGeminiapptogiveyouamoretailoredresponse.Butthesestilldon’tprovideafullypersonalizedexperience.
Introduction
04BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
IntroducingPersonalIntelligence
PersonalIntelligencemarks
theshifttoAIthatcantruly
understandyourpersonalcontext.
Itbringstogethertheinformationyoushareandtheactivitywithintheproductsyouuse,whileconnectingthedotsacrossyourGoogleappstotomakeAI
uniquelyhelpfulforyou.
WithPersonalIntelligence,youcanchoosetoconnectcertainGoogleappstogetmoretailoredresponses
—allwhileyourinformationremainssafeguarded.
Today,youcanuseabetaversionofPersonal
IntelligenceintheGeminiapp.Itsecurelyconnects
informationfromappslikeGmailandGooglePhotostomakeGeminiuniquelyhelpful.PersonalIntelligenceiscomingsoontoAIModeinSearch.
Thatmeansthe
Geminiapp
canhelpwithmore
tailoreddiscoveryandcomplexplanning—like
helpingyouplanforspringbreakbasedonplaces
you’vealreadybeenorproactivelyfindingtheperfectsetoftiresforyourspecificcarmakeandmodel.
Ifyouturnthisbetafeatureon,youcontrolwhichappstolink,andeachonesuperchargesthe
experience.
Thisisafoundationalsteptowardmovingbeyond
genericassistancetoAIthatworksforyou.It’sstill
earlydaysforthistechnology,andwe’recontinuingtoworkthroughknowntechnicalissuesandlimitations.Aswecontinuetotestandlearn,weareeagertohearyourfeedback.
05BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
HowPersonalIntelligenceWorks
TheTechnicalChallenge:
SolvingtheContextPackingProblem
PersonalIntelligenceunlocksnewutilitybysolving
forthecontextpackingproblem:enablingour
Geminimodelstosafelyandaccuratelyreasonoverdisparateandvastamountsofpersonaldatasourcesinreal-timewithoutcompromisinguserprivacy.
Products
withPersonal
IntelligenceGeminiappSearch
(comingsoon)
AIModel
connected
toPersonal
Intelligence
Engine
PersonalIntelligenceEngine
Securedata
retrievalwith
userpermission
GmailPhotosMore
GeminimodelenablingPersonalIntelligence
HowPersonalIntelligenceWorks
06BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
AdvancedGeminiModels&
ANewPersonalIntelligenceEngine
Tohandlethecomplexityofretrievingdatafrommultiplesourcessimultaneouslyandprovidesignificantlymorehelpfulresponsestoyou,webuiltanewengineforPersonalIntelligence.
PersonalIntelligencehastwocore
strengths:toolcallstoretrievespecificdetailsandreasoningacrossmany
complexsources.Itoftencombines
bothapproachesandcanworkacrosstext,photos,andvideotogiveyou
one-of-a-kindanswers.
ItenablesGeminimodelstosecurely
retrieverelevantcontext,leveraging
advancesintooluse,denseretrieval,andlongcontextcapabilitiestoreasonacrossyourpersonaldatafromGoogleproductsinreal-time.
AdvancedReasoning
Gemini3
,ourmostintelligentmodelseriestodate,
isbetteratgeneralunderstandinganddeciphering
moredepthandnuance—capabilitiesthatarecriticalforunderstandingcomplexpersonalcontext,such
asmappingfamilialrelationshipsorrecognizingyourspecificaestheticpreferences.
AdvancedToolUse
TheGeminimodelalsohassignificantadvancesintool
usecapabilitieswhichmeansitcanunderstandyourgoalandretrievemoreinformationrelatedtoyourpreferencesfromthePersonalIntelligenceengine.Thisretrievalalsobuildsonthefoundationofresearchwe’vedoneon
searchanddenseretrieval,suchas
GeminiEmbeddings
.
LongContext
Gemini3hasa1milliontokencontextwindowwhichenablesreasoningacrossavastamountofdata.
However,trulyhelpfulpersonalizationrequiresprocessingatamuchlargerscale,asauser’saccumulatedcontext
acrossemailsandphotosaloneoftenexceedsthiswindowbyordersofmagnitude.
Tobridgethisgap,weutilize“contextpacking”
—atechniquethathelpsusdynamicallyidentifyandsynthesizeappropriatepiecesofinformationintotheworkingmemoryforthemodel.
07BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
WiththisnewengineandGemini3,wenowhavethecapabilities
requiredfortruepersonalization.
Forexample,whenyouaskGeminito“Planalistof
restaurantsformyupcomingtripthatarenearmy
hotel”,withPersonalIntelligence,youwon’tjustget
generictop-ratedspots.TheGeminimodelunderstandsthatthistaskrequiressynthesizingdisparatepersonal
detailsfromacrossGoogleproducts—yourhotel
reservations,flightarrivaltime,pastdininghistory,andtheaspirationalspotsyou’vesaved.
?Themodelagenticallyandsecurelyexecutes
searchesforthepersonalinformationthat’srelevanttotheresponse,lookingforyourtripinrecentemails,butalsootherrelevantinformationrelatedtothe
query,likepastrestaurantreservationstounderstandwhatyoulove.
?Finally,itdeliversatailoredsetofpersonal
recommendationsclosetoyourupcoming
accommodationsbymakingsenseofyourdatalikeyourphotosandemails,aswellasthingslikeyour
pastGeminiappchatconversations,SearchqueriesandYouTubehistory.
Thisfundamentallyshiftsourarchitectureand
ourapproachtopersonalization:wearemoving
towardsaworldwhere,withyourpermission,productsliketheGeminiappcansecurelyaccesscertaintypesofpersonalinformationasacontinuousstreamof
contexttoinformeveryinteraction–deliveringreal,tailoredhelpfulness.
08BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
ResponsibleDevelopment
It’scriticaltodeveloptechnologylikePersonalIntelligence
responsibly.Inaccordancewith
ourAIprinciples
,weare
focusedonbuildingthistechnologysecurely,whileprotectinguserprivacyandsettingguardrailsforsensitivetopics.
Forexample,themodelaimstoavoidmakingproactiveassumptionsaboutsensitivedatalikeyourhealth,thoughitwilldiscussthisdataifyouask.
Privacy&
PersonalIntelligence
AkeyareaoffocusforuswhenbuildingPersonalIntelligencewasprotecting
userprivacyandsecurelyconnectingdatasourcesacrossGoogleapps.
Usercontrolsbydesign
Youcanchoosewhetherornottoturnthesefeaturesonorof.IntheGeminiapp,youcan
manageallyourpreferences
directlyinyoursettings
,likechoosingwhichservices—
suchasGoogleWorkspace,GooglePhotos,YouTube,
andSearch—youwanttoconnectasapartofPersonalIntelligenceinthe“ConnectedApps”settings.These
connectedappsettingsareofbydefault.
Securelyconnecteddatasources
Westartbybuildingonourbest-in-classsecurity
infrastructureandimplementadditionalindustry-leadingsafeguardstoensurethatthisdataremainsprotected
evenasitpowersnewAIexperiences.Forexample,
userdataisencryptedatrestbydefaultandprotected
intransitbetweenoursystemsusingApplicationLayer
TransportSecurity(ALTS).We’vealsodoneworkto
increaseresistancetopromptinjectionsandhaveimprovedprotectionagainstmisuseviacyberattacks.
LimitedgenerativeAItraining
Ourgoalistoimproveyourexperiencewhilekeepingyourdatasecureandunderyourcontrol.Builtwithprivacyin
mind,GeminiAppsdon’ttraindirectlyonyourGmailinboxorGooglePhotoslibrary.Toimprovefunctionalityover
time,wetrainoninfolikepromptsandresponsesinGeminiaswellassummaries,excerptsandinferencesusedtohelpansweryourprompts.Tolearnmore,visitthe
HelpCenter
.
ResponsibleDevelopment
09BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
LikemanyemergingAIfeatures,PersonalIntelligenceisstill
evolving.Thistechnologymaymakemistakes—likemisinterpretingcontextormakingincorrectassumptionsaboutyouractivity.
KnownTechnical
Limitations&Issues
YoucancorrectGeminiifitmakesmistakesdirectlyviaaprompt(e.g.
rememberthatIdon’teatmeat).
We’realsoworkingtoaddressknown
issuesthroughrigorousinternaltestingandmodeltuning,butweknownew
challengeswillarise.Your
feedback
iskeytoidentifyingthemandmakingthistechnologyashelpfulaspossible.
Herearesomeofthekeytechnical
challengeswe’reworkingtoaddress:
?Overpersonalizationbasedonyourinterests
Aknownchallengeisthetendencyforthemodeltorelytooheavilyonapersonalizedinferencewhereit’snot
appropriate—aphenomenonwecall“tunnelvision”.
Example:YoumightbeabigfanofcofeeshopsandthemodelunderstandsthataspartofPersonalIntelligence.Whenyouaskitto“planatriptoAustralia”,itmay
inadvertentlyplanatripwheretheitineraryisfocusedoncofeeshops.
Example:Ifyouhaveanemailinyourinboxaboutyouremployment,itmightstartanchoringyourresponsesaroundthefactthatyou’reasoftwareengineer.
Example:Ifyouask“whatkindofsocksshouldIbuy?”,itcouldassumethatbecauseyouhaveamarathoncomingupyouareonlylookingforathleticrunningsocks.
?Mistakinganotherperson’spreferencesforyourown
Intestingwe’vealsoseenachallengearoundthemodelconflatingsubjects—forinstance,attributingafamilymember’sintereststoyou.WhenyoushareahouseholdaccountforserviceslikeYouTube,ordoresearchor
makeapurchaseforafriendorfamilymember,the
systemmaymistakeothers’preferencesasyourown.
Example:Basedonareceiptinyouremail,themodel
mightthinkyouenjoylisteningtoheavymetalandofersuggestionsonconcertsnearby,whenyouactually
purchasedtheticketsasabirthdaygiftforyourbrother.
?Incompleteinformation
Therearesomeinstanceswhereyoumightnotseeall
ofyourpersonalinformationifyouask.Alltherelevantinformationmaynothavebeenretrievedoroursystemsmightmakeinaccurateinferencesbasedonthe
informationavailable.
Example:Ifyouaskforasummaryoflastmonth’s
activities,wemightonlyhaveinformationforafractionofthem.
ResponsibleDevelopment
10BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
KnownTechnical
Limitations&Issues
?Mixinguptimelines
TemporalrelevanceisaknownissueforAImodelsgenerallyandaddingpersonalhistoryaddsadditionalcomplexityandmakesittrickytomakerelevantconnections.
Example:Themodelmaymixuptiming,notingthata
graduateprogramapplicationdeadlinefromyouremailisinthepast,wheninfactit’sstillupcoming.
?Misinterpretingrelationships
Themodelalsohaschallengesunderstandingandgraspingthenuanceofrelationshipsandcomplexdynamics,
sometimesmisidentifyingfamilyroles.
Example:Itcanmisidentifyamotherforagrandmotherbasedonambiguoustextinemailsorlabelasiblingasafriend.
?Missingmajorlifechanges
Themodelwon’talwaysknowwhenamajorchangeinyourlifehasoccurred,suchasadivorceoradeathinthefamily.
Example:Themodelmightsuggestananniversarydinnerreservationforapartneryouarenolongerwith.
?Incorrectassumptions
Themodeloftenassumesthatatransactionrecordequalsacompletedaction.Itmayassumeyouboughtanitemorattendedaneventbasedonaconfirmationemail,missingthesubsequentcontextthatyoureturnedtheitemor
cancelledthereservation.
Example:Themodelcouldrecommendafollow-upbookinaseriesbecauseyouboughtthefirstone,failingtorealizeyoureturneditthenextday.
?Overlookingcorrections
Ifyoucorrectthemodelaboutyourpersonalinformation,itmightbemissedsometimes.Thisoftenhappenswithmoreambiguousprompts.
Example:Youtellthemodel,“Idon’tusuallyeatsteak,”butitsuggestsasteakhouserecommendationagainaweek
latereventhoughyougenerallydon’tprefersteak.
ResponsibleDevelopment
11BuildingPersonalIntelligence:AsteptowardstrulypersonalAI
OtherTechnicalChallenges?Balancingspeedanddepth
Deliveringtruepersonalizationrequiresmorecomplexprocessing,sowe’reconstantlynavigatingthedelicatebalancebetweenlatencyandqualitytradeofs.
Toensurethebestuserexperience,thesystem
distinguishesbetweengeneralquerieswithout
personalizationandcomplexpersonalrequestsandwe’llcontinuetoiterateonthisasourmodelsandtechnologyevolve.
Forgeneralquestionswithoutpersonalization,you’llgetafasterresponse.
Withmorepersonalquestions,youmayseea“thinking”
indicatorintheproductwhichmaysay“Personalizing”or
“PersonalIntelligence”.Thisvisualizestheprocessingstepswhilethemodelsecurelyretrievesandreasonsoveryour
personalinformationtoprovideathoroughanswer.
IntheGeminiapp,youcanalsochoosetheoption“Answernow”togetafasterresponseifyou’reusingthe“Thinking”or“Pro”models.
?Ta
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年江西省水利投資集團(tuán)有限公司中層管理人員招聘?jìng)淇碱}庫含答案詳解
- 2025年高職會(huì)計(jì)(財(cái)務(wù)分析)試題及答案
- 2025年中職第三學(xué)年(房地產(chǎn)市場(chǎng)調(diào)研)市場(chǎng)分析階段測(cè)試題及答案
- 2025年中職(環(huán)境監(jiān)測(cè)技術(shù))環(huán)境檢測(cè)階段測(cè)試題及答案
- 2025年大學(xué)二年級(jí)(稅收學(xué))稅務(wù)籌劃綜合測(cè)試題及答案
- 2025年大學(xué)服裝效果圖(電腦繪圖技巧)試題及答案
- 2025年中職烹飪工藝與營(yíng)養(yǎng)(蒸菜制作工藝)試題及答案
- 2025年中職城市水利(城市水利工程)試題及答案
- 2025年高職數(shù)字媒體藝術(shù)設(shè)計(jì)(展示設(shè)計(jì))試題及答案
- 2026年電腦維修(病毒查殺方法)試題及答案
- 五年級(jí)數(shù)學(xué)下冊(cè)寒假作業(yè)每日一練
- 企業(yè)管理的基礎(chǔ)工作包括哪些內(nèi)容
- 學(xué)校“1530”安全教育記錄表(2024年秋季全學(xué)期)
- 鋁合金門窗工程技術(shù)規(guī)范
- 食材配送服務(wù)方案投標(biāo)文件(技術(shù)標(biāo))
- 室性心律失常
- 《2024消費(fèi)者金融知識(shí)學(xué)習(xí)偏好及行業(yè)宣教洞察報(bào)告》
- 中國高血壓防治指南(2024年修訂版)解讀課件
- 科研項(xiàng)目數(shù)據(jù)保護(hù)應(yīng)急預(yù)案
- 2024年土地轉(zhuǎn)租的合同范本
- 附件2:慢病管理中心評(píng)審實(shí)施細(xì)則2024年修訂版
評(píng)論
0/150
提交評(píng)論