內(nèi)蒙古錦山蒙古族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第1頁
內(nèi)蒙古錦山蒙古族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第2頁
內(nèi)蒙古錦山蒙古族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第3頁
內(nèi)蒙古錦山蒙古族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第4頁
內(nèi)蒙古錦山蒙古族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古錦山蒙古族中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末綜合測試試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線與直線垂直,則()A. B.C. D.32.設(shè)等差數(shù)列,的前n項(xiàng)和分別是,若,則()A. B.C. D.3.過拋物線的焦點(diǎn)作直線l,交拋物線與A、B兩點(diǎn),若線段中點(diǎn)的縱坐標(biāo)為3,則等于()A.10 B.8C.6 D.44.點(diǎn)到直線的距離為A.1 B.2C.3 D.45.在等比數(shù)列中,,,則等于()A. B.5C. D.96.已知雙曲線的離心率為5,則其標(biāo)準(zhǔn)方程為()A. B.C. D.7.設(shè)是等差數(shù)列的前n項(xiàng)和,若,,則()A.26 B.-7C.-10 D.-138.已知函數(shù),在上隨機(jī)取一個(gè)實(shí)數(shù),則使得成立的概率為()A. B.C. D.9.函數(shù)的單調(diào)遞減區(qū)間為()A. B.C. D.10.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.11.如圖,已知、分別是橢圓的左、右焦點(diǎn),點(diǎn)、在橢圓上,四邊形是梯形,,且,則的面積為()A. B.C. D.12.已知空間向量,,,則()A.4 B.-4C.0 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知正三角形邊長為a,則該三角形內(nèi)任一點(diǎn)到三邊的距離之和為定值.類比上述結(jié)論,在棱長為a的正四面體內(nèi),任一點(diǎn)到其四個(gè)面的距離之和為定值_____.14.已知正方體,點(diǎn)在底面內(nèi)運(yùn)動(dòng),且始終保持平面,設(shè)直線與底面所成的角為,則的最大值為______.15.設(shè),復(fù)數(shù),,若是純虛數(shù),則的虛部為_________.16.已知圓錐的母線長為cm,其側(cè)面展開圖是一個(gè)半圓,則底面圓的半徑為____cm.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,過焦點(diǎn)的直線l交拋物線C于M、N兩點(diǎn),且線段中點(diǎn)的縱坐標(biāo)為2(1)求直線l的方程;(2)設(shè)x軸上關(guān)于y軸對稱的兩點(diǎn)P、Q,(其中P在Q的右側(cè)),過P的任意一條直線交拋物線C于A、B兩點(diǎn),求證:始終被x軸平分18.(12分)某校高三年級進(jìn)行了一次數(shù)學(xué)測試,全年級學(xué)生的成績都落在區(qū)間內(nèi),其成績的頻率分布直方圖如圖所示,若(1)求a,b的值;(2)若成績落在區(qū)間內(nèi)的人數(shù)為36人,請估計(jì)該校高三學(xué)生的人數(shù)19.(12分)已知橢圓的上頂點(diǎn)在直線上,點(diǎn)在橢圓上.(1)求橢圓C的方程;(2)點(diǎn)P,Q在橢圓C上,且,,點(diǎn)G為垂足,是否存在定圓恒經(jīng)過A,G兩點(diǎn),若存在,求出圓的方程;若不存在,請說明理由.20.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點(diǎn)到平面的距離.21.(12分)已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;(2)當(dāng)時(shí),求函數(shù)的極值.22.(10分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若,證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】先分別求出兩條直線的斜率,再利用兩直線垂直斜率之積為,即可求出.【詳解】由已知得直線與直線的斜率分別為、,∵直線與直線垂直,∴,解得,故選:.2、C【解析】結(jié)合等差數(shù)列前項(xiàng)和公式求得正確答案.【詳解】依題意等差數(shù)列,的前n項(xiàng)和分別是,由于,故可設(shè),,當(dāng)時(shí),,,所以,所以.故選:C3、B【解析】根據(jù)拋物線的定義求解【詳解】拋物線的焦點(diǎn)為,準(zhǔn)線方程為,設(shè),則,所以,故選:B4、B【解析】直接利用點(diǎn)到直線的距離公式得到答案.【詳解】,答案為B【點(diǎn)睛】本題考查了點(diǎn)到直線的距離公式,屬于簡單題.5、D【解析】由等比數(shù)列的項(xiàng)求公比,進(jìn)而求即可.【詳解】由題設(shè),,∴故選:D6、D【解析】雙曲線離心率公式和a、b、c的關(guān)系即可求得m,從而得到雙曲線的標(biāo)準(zhǔn)方程.【詳解】∵雙曲線,∴,又,∴,∵離心率為,∴,解得,∴雙曲線方程.故選:D.7、C【解析】直接利用等差數(shù)列通項(xiàng)和求和公式計(jì)算得到答案.【詳解】,,解得,故.故選:C.8、B【解析】首先求不等式的解集,再根據(jù)區(qū)間長度,求幾何概型的概率.【詳解】由,得,解得,在區(qū)間上隨機(jī)取一實(shí)數(shù),則實(shí)數(shù)滿足不等式的概率為故選:B9、A【解析】先求定義域,再由導(dǎo)數(shù)小于零即可求得函數(shù)的單調(diào)遞減區(qū)間.【詳解】由得,所以函數(shù)的定義域?yàn)?,又,因?yàn)?,所以由得,解得,所以函?shù)的單調(diào)遞減區(qū)間為.故選:A.10、B【解析】求出已知雙曲線的漸近線方程,逐一驗(yàn)證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B11、A【解析】設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),連接、,分析可知、、三點(diǎn)共線,設(shè)點(diǎn)、,設(shè)直線的方程為,分析可知,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,求出的值,可得出的值,再利用三角形的面積公式可求得結(jié)果.【詳解】設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),連接、,如下圖所示:因?yàn)闉?、的中點(diǎn),則四邊形為平行四邊形,可得且,因?yàn)?,故、、三點(diǎn)共線,設(shè)、,易知點(diǎn),,,由題意可知,,可得,若直線與軸重合,設(shè),,則,不合乎題意;設(shè)直線的方程為,聯(lián)立,可得,由韋達(dá)定理可得,得,,則,可得,故,因此,.故選:A.12、A【解析】根據(jù)空間向量平行求出x,y,進(jìn)而求得答案.【詳解】因?yàn)?,所以存在?shí)數(shù),使得,則.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用正四面體內(nèi)任一點(diǎn)可將正四面體分成四個(gè)小四面體,令它們的高分別為,由體積相等即可求得;【詳解】正三角形邊長為a,則該三角形內(nèi)任一點(diǎn)到三邊的距離分別為,即有:,解得同理,棱長為a的正四面體內(nèi),任一點(diǎn)到其四個(gè)面的距離分別為,即有:,解得故答案為:【點(diǎn)睛】本題考查了利用空間幾何體的等體積法求高的和為定值,屬于簡單題;14、【解析】畫出立體圖形,因?yàn)槊婷?在底面內(nèi)運(yùn)動(dòng),且始終保持平面,可得點(diǎn)在線段上運(yùn)動(dòng),因?yàn)槊婷?直線與底面所成的角和直線與底面所成的角相等,即可求得答案.【詳解】連接和,面面在底面內(nèi)運(yùn)動(dòng),且始終保持平面可得點(diǎn)在線段上運(yùn)動(dòng),面面,直線與底面所成的角和直線與底面所成的角相等面直線與底面所成的角為:有圖像可知:長是定值,當(dāng)最短時(shí),,即最大,即角最大設(shè)正方體的邊長為,故故答案為:【點(diǎn)睛】本題考查了求線面角的最大值,解題是掌握線面角的定義和處理動(dòng)點(diǎn)問題時(shí),應(yīng)畫出圖形,尋找?guī)缀侮P(guān)系,考查了分析能力和計(jì)算能力,屬于難題.15、【解析】由復(fù)數(shù)除法的運(yùn)算法則求出,又是純虛數(shù),可求出,從而根據(jù)共軛復(fù)數(shù)及虛部的定義即可求解.【詳解】解:因?yàn)閺?fù)數(shù),,所以,又是純虛數(shù),所以,所以,所以所以的虛部為,故答案:.16、【解析】根據(jù)題意可知圓錐側(cè)面展開圖的半圓的半徑為cm,再根據(jù)底面圓的周長等于側(cè)面的弧長,即可求出結(jié)果.【詳解】設(shè)底面圓的半徑為,由于側(cè)面展開圖是一個(gè)半圓,又圓錐的母線長為cm,所以該半圓的半徑為cm,所以,所以(cm).故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】(1)設(shè)直線l的方程為:,聯(lián)立方程,利用韋達(dá)定理可得結(jié)果;(2)設(shè),借助韋達(dá)定理表示,即可得到結(jié)果.【詳解】(1)由已知可設(shè)直線l的方程為:,聯(lián)立方程組可得,設(shè),則又因?yàn)?,得,故直線l的方程為:即為;(2)由題意可設(shè),可設(shè)過P的直線為聯(lián)立方程組可得,顯然設(shè),則所以所以始終被x軸平分18、(1)(2)人【解析】(1)由頻率分布直方圖的性質(zhì)求得,結(jié)合,即可求得的值;(2)由頻率分布直方圖求得落在區(qū)間內(nèi)的概率,進(jìn)而求得該校高三年級的人數(shù)【小問1詳解】解:由頻率分布直方圖的性質(zhì),可得:,可得,又由,可得解得;【小問2詳解】解:由頻率分布直方圖可得,成績落在區(qū)間內(nèi)的概率為,則該校高三年級的人數(shù)為(人)19、(1);(2)存在,定圓.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線的方程,利用韋達(dá)定理及條件可得直線恒過定點(diǎn),則以為直徑的圓適合題意,即得.【小問1詳解】由題設(shè)知,橢圓上頂點(diǎn)為,且在直線上∴,即又點(diǎn)在橢圓上,∴解得,∴橢圓C的方程為;【小問2詳解】設(shè),,當(dāng)直線斜率存在,設(shè)直線為:聯(lián)立方程,化簡得∴,,∵,∴又∵,∴將,代入,化簡得,即則或,①當(dāng)時(shí),直線恒過定點(diǎn)與點(diǎn)重合,不符題意.②當(dāng)時(shí),直線恒過定點(diǎn),記為點(diǎn),∵,∴以為直徑,其中點(diǎn)為圓心的圓恒經(jīng)過兩點(diǎn),則圓方程為:;當(dāng)直線斜率不存在,設(shè)方程為,,,且,,∴,解得或(舍去),,取,以為直徑作圓,圓方程為:恒經(jīng)過兩點(diǎn),綜上所述,存在定圓恒經(jīng)過兩點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第二問的關(guān)鍵是證明直線恒過定點(diǎn),結(jié)合條件可得以為直徑的圓,適合題意即得.20、(1)證明見解析;(2).【解析】(1)根據(jù)等邊三角形的性質(zhì)、線面垂直的性質(zhì),結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)利用余弦定理,結(jié)合三棱錐的等積性進(jìn)行求解即可.【小問1詳解】證明:設(shè),因?yàn)槭堑冗吶切?,且,所以是的中點(diǎn),則.又,所以,所以,即.又平面平面,所以.又,所以平面.因?yàn)槠矫妫云矫嫫矫?【小問2詳解】解:因?yàn)?,所?在中,,所以,則又平面,所以.如圖,連接,則,所以.設(shè)點(diǎn)到平面的距離為,因?yàn)椋?,解得,即點(diǎn)到平面的距離為.21、(1)2(2)當(dāng)時(shí),沒有極值;當(dāng)時(shí),極大值為,極小值為.【解析】(1)當(dāng)時(shí),,可得:.,,得或,列出函數(shù)單調(diào)性表格,即可最大值;(2),令,得或,分別討論和,即可求得的極值.【詳解】(1)當(dāng)時(shí),,所以.令,得或,列表如下:-2-11+0-0+極大值極小值由于,,所以函數(shù)在區(qū)間上的最大值為2.(2),令,得或.當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,無極值.當(dāng)時(shí),列表如下:+0-0+極大值極小值函數(shù)的極大值為,極小值為.【點(diǎn)睛】本題主要考查根據(jù)導(dǎo)數(shù)求函數(shù)單調(diào)性和極值,解題關(guān)鍵是掌握導(dǎo)數(shù)求單調(diào)性的方法和極值定義,考查分析能力和計(jì)算能力,屬于中檔題.22、(1)當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;(2)見詳解【解析】(1)對函數(shù)進(jìn)行求導(dǎo),然后根據(jù)參數(shù)進(jìn)行分類討論;(2)構(gòu)造函數(shù),求函數(shù)的最小值即可證出.【詳解】(1)的定義域?yàn)椋?當(dāng)時(shí),在上恒成立,所以在上單調(diào)遞增;當(dāng)時(shí),時(shí),;時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.(2)當(dāng)時(shí),.令,,則.,令,.恒成立,所以在上單調(diào)遞增.因?yàn)?,,所以存在唯一的,使得,?①當(dāng)時(shí),,即,所以在上單調(diào)遞減

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論