2026屆浙江省寧波市海曙區(qū)效實中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
2026屆浙江省寧波市海曙區(qū)效實中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
2026屆浙江省寧波市海曙區(qū)效實中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
2026屆浙江省寧波市海曙區(qū)效實中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
2026屆浙江省寧波市海曙區(qū)效實中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆浙江省寧波市海曙區(qū)效實中學(xué)高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是等比數(shù)列,且,則的值為()A.3 B.6C.9 D.362.已知等比數(shù)列的前n項和為,若,,則()A.250 B.210C.160 D.903.若,都是實數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.均勻壓縮是物理學(xué)一種常見現(xiàn)象.在平面直角坐標(biāo)系中曲線均勻壓縮,可用曲線上點的坐標(biāo)來描述.設(shè)曲線上任意一點,若將曲線縱向均勻壓縮至原來的一半,則點的對應(yīng)點為.同理,若將曲線橫向均勻壓縮至原來的一半,則曲線上點的對應(yīng)點為.若將單位圓先橫向均勻壓縮至原來的一半,再縱向均勻壓縮至原來的,得到的曲線方程為()A. B.C. D.5.已知函數(shù),則()A.0 B.1C.2 D.6.已知兩圓相交于兩點,,兩圓圓心都在直線上,則值為()A. B.C. D.7.如下圖,邊長為2的正方體中,O是正方體的中心,M,N,T分別是棱BC,,的中點,下列說法錯誤的是()A. B.C. D.到平面MON的距離為18.設(shè),是雙曲線()的左、右焦點,是坐標(biāo)原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.9.設(shè)等比數(shù)列的前項和為,且,則()A. B.C. D.10.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.11.已知直線與直線平行,則實數(shù)a的值為()A.1 B.C.1或 D.12.在流行病學(xué)中,基本傳染數(shù)是指在沒有外力介入,同時所有人都沒有免疫力的情況下,一個感染者平均傳染的人數(shù).一般由疾病的感染周期、感染者與其他人的接觸頻率、每次接觸過程中傳染的概率決定.假設(shè)某種傳染病的基本傳染數(shù),平均感染周期為4天,那么感染人數(shù)超過1000人大約需要()(初始感染者傳染個人為第一輪傳染,這個人每人再傳染個人為第二輪傳染)A.20天 B.24天C.28天 D.32天二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.14.已知向量,,若,則______15.已知數(shù)列的前4項依次為,,,,則的一個通項公式為________16.雙曲線的離心率為,則它的一個焦點到一條漸近線的距離為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,設(shè)橢圓()的離心率是e,定義直線為橢圓的“類準(zhǔn)線”,已知橢圓C的“類準(zhǔn)線”方程為,長軸長為8.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點,A為橢圓C的右頂點,直線l交橢圓C于E,F(xiàn)兩不同點(點E,F(xiàn)與點A不重合),且滿足,若點P滿足,求直線的斜率的取值范圍.18.(12分)籃天技校為了了解車床班學(xué)生的操作能力,設(shè)計了一個考查方案;每個考生從道備選題中一次性隨機抽取道題,按照題目要求獨立完成零件加工,規(guī)定:至少正確加工完成其中個零件方可通過.道備選題中,考生甲有個零件能正確加工完成,個零件不能完成;考生乙每個零件正確完成的概率都是,且每個零件正確加工完成與否互不影響(1)分別求甲、乙兩位考生正確加工完成零件數(shù)的概率分布列(列出分布列表);(2)試從甲、乙兩位考生正確加工完成零件數(shù)的數(shù)學(xué)期望及兩人通過考查的概率分析比較兩位考生的操作能力19.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.20.(12分)已知是等差數(shù)列,,.(1)求的通項公式;(2)設(shè)的前項和,求的值.21.(12分)命題存在,使得;命題對任意的,都有(1)若命題p為真時,求實數(shù)a的取值范圍;若命題q為假時,求實數(shù)a的取值范圍;(2)如果命題為真命題,命題為假命題,求實數(shù)a的取值范圍22.(10分)如圖,在四棱錐中,底面為直角梯形,底面分別為的中點,(1)求證:平面平面;(2)求二面角的大小

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】應(yīng)用等比中項的性質(zhì)有,結(jié)合已知求值即可.【詳解】由等比數(shù)列的性質(zhì)知:,,,所以,又,所以.故選:C2、B【解析】設(shè)為等比數(shù)列,由此利用等比數(shù)列的前項和為能求出結(jié)果【詳解】設(shè),等比數(shù)列的前項和為為等比數(shù)列,為等比數(shù)列,解得故選:B3、A【解析】根據(jù)充分條件和必要條件的定義判斷即可得正確選項.【詳解】若,則,可得,所以,可得,故充分性成立,取,,滿足,但,無意義得不出,故必要性不成立,所以是的充分不必要條件,故選:A.4、C【解析】設(shè)單位圓上一點為,經(jīng)過題設(shè)變換后坐標(biāo)為,則,代入圓的方程即可得曲線方程.【詳解】由題設(shè),單位圓上一點坐標(biāo)為,經(jīng)過橫向均勻壓縮至原來的一半,縱向均勻壓縮至原來的,得到對應(yīng)坐標(biāo)為,∴,則,故中,可得:.故選:C.5、C【解析】對函數(shù)f(x)求導(dǎo)即可求得結(jié)果.【詳解】函數(shù),則,,故選C【點睛】本題考查正弦函數(shù)的導(dǎo)數(shù)的應(yīng)用,屬于簡單題.6、A【解析】由相交弦的性質(zhì),可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標(biāo),進(jìn)而可得中點的坐標(biāo),代入直線方程可得;進(jìn)而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質(zhì),相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上;由與直線垂直,可得,解可得,則,故中點為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點睛】方法點睛:解答圓和圓的位置關(guān)系時,要注意利用平面幾何圓的知識來分析解答.7、D【解析】建立空間直角坐標(biāo)系,進(jìn)而根據(jù)空間向量的坐標(biāo)運算判斷A,B,C;對D,算出平面MON的法向量,進(jìn)而求出向量在該法向量方向上投影的絕對值,即為所求距離.【詳解】如圖建立空間直角坐標(biāo)系,則.對A,,則,則A正確;對B,,則,則B正確;對C,,則C正確;對D,設(shè)平面MON的法向量為,則,取z=1,得,,所以到平面MON的距離為,則D錯誤.故選:D.8、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關(guān)知識,考查了雙曲線的離心率和余弦定理的應(yīng)用,屬于中檔題9、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關(guān)系,再利用前n項和公式計算得解.【詳解】設(shè)等比數(shù)列的的公比為q,由得:,解得,所以.故選:C10、B【解析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng)11、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A12、B【解析】根據(jù)題意列出方程,利用等比數(shù)列的求和公式計算n輪傳染后感染的總?cè)藬?shù),得到指數(shù)方程,求得近似解,然后可得需要的天數(shù).【詳解】感染人數(shù)由1個初始感染者增加到1000人大約需要n輪傳染,則每輪新增感染人數(shù)為,經(jīng)過n輪傳染,總共感染人數(shù)為:即,解得,所以感染人數(shù)由1個初始感染者增加到1000人大約需要24天,故選:B【點睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)離心率得出,結(jié)合得出關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.14、【解析】根據(jù)向量平行求得,由此求得.【詳解】由于,所以.故答案為:15、(答案不唯一)【解析】觀察數(shù)列前幾項,找出規(guī)律即可寫出通項公式.【詳解】根據(jù)數(shù)列前幾項,先不考慮正負(fù),可知,再由奇數(shù)項為負(fù),偶數(shù)項為正,可得到一個通項公式,故答案為:(不唯一)16、【解析】根據(jù)雙曲線離心率為,可得的值,進(jìn)而可得雙曲線焦點到一條漸近線的距離.【詳解】由雙曲線離心率為,得,即,故雙曲線方程為,焦點坐標(biāo)為,漸近線方程為:,故焦點到漸近線的距離為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題意列關(guān)于,,的方程,聯(lián)立方程組求得,,,則橢圓方程可求;(2)分直線軸與直線l不垂直于x軸兩種情況討論,當(dāng)直線l不垂直于x軸時,設(shè),,直線l:(,),聯(lián)立直線方程與橢圓方程,消元由,得到,再列出韋達(dá)定理,由則,解得,再由,求出的坐標(biāo),則,再利用基本不等式求出取值范圍;【詳解】解:(1)由題意得:,,又,聯(lián)立以上可得:,,,橢圓C的方程為.(2)由(1)得,當(dāng)直線軸時,又,聯(lián)立得,解得或,所以,此時,直線的斜率為0.當(dāng)直線l不垂直于x軸時,設(shè),,直線l:(,),聯(lián)立,整理得,依題意,即(*)且,.又,,,即,且t滿足(*),,,故直線的斜率,當(dāng)時,,當(dāng)且僅當(dāng),即時取等號,此時;當(dāng)時,,當(dāng)且僅當(dāng),即時取等號,此時;綜上,直線的斜率的取值范圍為.【點睛】本題考查利用待定系數(shù)法求橢圓方程,直線與橢圓的綜合應(yīng)用,屬于難題.18、(1)分布列見解析(2)甲的試驗操作能力較強,理由見解析【解析】(1)設(shè)考生甲、乙正確加工完成零件的個數(shù)分別為、,則的可能取值有、、,的可能取值有、、、,且,計算出兩個隨機變量在不同取值下的概率,可得出這兩個隨機變量的概率分布列;(2)計算出、、、的值,比較、的大小,以及、的大小,由此可得出結(jié)論.【小問1詳解】解:設(shè)考生甲、乙正確加工完成零件的個數(shù)分別為、,則的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正確加工完成零件數(shù)的概率分布列如下表所示:,,,,所以,考生乙正確加工完成零件數(shù)的概率分布列如下表所示:【小問2詳解】解:,,,,所以,,從做對題的數(shù)學(xué)期望分析,兩人水平相當(dāng);從通過考查的概率分析,甲通過的可能性大,因此可以判斷甲的試驗操作能力較強.19、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,用點到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點為坐標(biāo)原點,分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,D(3,6,0),A(0,6,0)設(shè)平面的一個法向量所以n?PD令,可得記點到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設(shè)二面角的平面角為由圖可知,20、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,利用題中等式建立、的方程組,求出、的值,然后根據(jù)等差數(shù)列的通項公式求出數(shù)列的通項公式;(2)利用等差數(shù)列前項和公式求出,然后由求出的值.【詳解】(1)設(shè)等差數(shù)列的公差為,則,解得,,數(shù)列的通項為;(2)數(shù)列的前項和,由,化簡得,即,.【點睛】本題考查等差數(shù)列的通項公式的求解,考查等差數(shù)列的前項和公式,常用的方法就是利用首項和公差建立方程組求解,考查運算求解能力,屬于中等題.21、(1)p為真時或,q為假時;(2){或}.【解析】(1)p為真應(yīng)用判別式求參數(shù)范圍;q為真,根據(jù)恒成立求參數(shù)范圍,再判斷q為假對應(yīng)的參數(shù)范圍.(2)由題設(shè)易得p、q一真一假,討論p、q的真假,結(jié)合(1)的結(jié)果求a的取值范圍【小問1詳解】若p真,則有實數(shù)根,∴,解得或若q為真,則,即故q為假時,實數(shù)a的取值范圍為【小問2詳解】∵命題真命題,命題為假命題,∴p,q一真一假,當(dāng)p真q假時,,可得當(dāng)p假q真時,,可得綜上,實數(shù)a取值范圍為或.22、(1)證明見解析(2)【解析】(1)依題意可得平行四邊形是矩形,即可得到,再由及

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論