【中考數(shù)學(xué)試卷+答案解析】矩形菱形與正方形_第1頁(yè)
【中考數(shù)學(xué)試卷+答案解析】矩形菱形與正方形_第2頁(yè)
【中考數(shù)學(xué)試卷+答案解析】矩形菱形與正方形_第3頁(yè)
【中考數(shù)學(xué)試卷+答案解析】矩形菱形與正方形_第4頁(yè)
【中考數(shù)學(xué)試卷+答案解析】矩形菱形與正方形_第5頁(yè)
已閱讀5頁(yè),還剩67頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

矩形菱形與正方形一、選擇題1川州?3分如圖形ABD矩形菱形與正方形一、選擇題1川州?3分如圖形ABD對(duì)線BD折使C落在處BC交AD于點(diǎn),下結(jié)不定成的()A.ADBC′ B.∠BD∠EDB C.△BE△CDD.si∠AE=【分】要據(jù)疊后角邊等到等邊之的系即選正確案.【解】:、BCBC,AD=C∴ADBC,以正.B、∠BD∠ED,CBD∠EB,∠EB=∠DB確.D、∵inABE= ,∴∠ED=EDB∴BE=E∴si∠AB=.故選C.【點(diǎn)題要排法明BD正所不確就是C除法是學(xué)中一常的題法.2(山濱州3)下命,中真題的(A.組邊行另對(duì)邊等四形平四邊形B.角互垂的形是形C.角相的邊矩形D.組邊等矩正方形)【分分是否真題需分分析題是否推結(jié)而用排法答案.【解】:、如梯形故選錯(cuò);B、據(jù)形判,對(duì)角互垂的行邊形故選錯(cuò);C、角相且相的平四形矩,本選錯(cuò);D、組邊等矩正方,本項(xiàng)確.故選D.【點(diǎn)本主要查行四形判與題真假故選D.【點(diǎn)本主要查行四形判與題真假確的題真命錯(cuò)的命題做命.?dāng)囝}的假鍵要悉本中性定,度中.3湖北省宜昌3分)圖正方形ABCD的邊為1,點(diǎn)E,F(xiàn)是對(duì)線AC上的點(diǎn),E⊥ABEI⊥D,F(xiàn)HAB,F(xiàn)⊥A,垂分別為G,IH,J則中陰部分的面等于()A.1B.C.D.【分】據(jù)對(duì)圖的性,決題可;【解】:四形CD正形,∴線AC是方形ABCD的對(duì)軸,∵EGABEIADFHB,F(xiàn)⊥A,足別為,I,,.∴根對(duì)性知四形EFG面與邊形FJI面相,∴S陰=S正方形ABCD=,故選B.【點(diǎn)本考查方的性解的關(guān)是用軸稱(chēng)性解問(wèn)于考考題型.4湖北省孝感3分如形BCD的角線CBD交點(diǎn)C=1BD24,則形ABD周為()A.52B.48C.40D.20【分】勾定即求得B長(zhǎng)繼求形ABD周.【解】:形ABD中,B【解】:形ABD中,B=2,AC10,∴OB=2,A=,在R△ABO中AB==13,∴形ABD周長(zhǎng)4AB2,故選A.【點(diǎn)題查菱的性股理知解的鍵熟掌菱形性屬于中常題.(山臨沂3如圖點(diǎn)EFGH別是形ABD邊ABCCDDA的中點(diǎn)則列法:①若C=B,四形EH為形;②若C⊥D則邊形GH菱;③若形EFH平邊形則C與BD相分;④若形EFH正,則C與BD相直相等.其中確個(gè)是( )A.1B.2C.3D.4【分因一般邊的中四形平四形當(dāng)角線D=AC中點(diǎn)邊是菱形當(dāng)線A⊥BD中點(diǎn)邊是角線C=B且A⊥D點(diǎn)邊形是正形,【解】:為般邊形中四形平四邊,當(dāng)對(duì)線B=AC時(shí)中四邊是形當(dāng)角線AC⊥BD時(shí)中四形矩形當(dāng)角線ACBD且A⊥D中點(diǎn)邊是方,故④項(xiàng)確,故選A.【點(diǎn)題查點(diǎn)邊形平四故④項(xiàng)確,故選A.【點(diǎn)題查點(diǎn)邊形平四形矩菱的定知題的鍵記住一般邊的點(diǎn)邊是平四當(dāng)線D=AC時(shí)中四形形當(dāng)角線AC⊥D,點(diǎn)邊矩形當(dāng)線ACBD且A⊥BD時(shí)中四是正形.6(山威·3)形ABD與EF,圖放點(diǎn)BC,E共,點(diǎn),,G共線接A,取F中點(diǎn),接G若BCF=2,D=C=1則H=()A.1B.C.D.【分長(zhǎng)GH交D點(diǎn)P先△AP≌FGH得APGF=GHPH=PG利用股定理得PG=,而出案.【解】:圖長(zhǎng)GH交D點(diǎn),∵四形BCD和邊形EFG是形,∴∠AC=ADG∠CF=9°,A=BC2、F=C=1,∴ADGF,∴∠GH=PA,又∵H是F中,∴AH=H,在△AH△FH∵,∴△AH△FG(AA∴AP=F=,GHPH=PG,∴PD=D﹣P=,∵CG=、C=1,∴AP=F=,GHPH=PG,∴PD=D﹣P=,∵CG=、C=1,∴DG=,則GH=PG=×=,故選C.【點(diǎn)本主要查形的題的鍵掌握等角的定性形性質(zhì)、股理知點(diǎn).7(南永市4分)列題真題是( )A.角相的邊矩形B.角互垂的形是形C.意邊的角為36°D.角的位平第三,且于三的一半【分根矩形判方對(duì)A行斷根菱形判方對(duì)B進(jìn)判據(jù)邊形的角對(duì)C進(jìn)判;根三形位性對(duì)D行斷.【解】:、角等的行邊是形所以A選為命;B、角互垂的四邊是形以B項(xiàng)為命;C、意邊的角為36°所以C項(xiàng)假命;D、角的位平第三且于三的半,以D選為命.故選D.【點(diǎn)題查命與定斷件情語(yǔ)句叫命多題都由設(shè)和結(jié)論部組設(shè)已知論是已事項(xiàng)出事個(gè)題可寫(xiě)如果…么”式.命題正性用理實(shí)的這的命叫定理.(2018年蘇宿遷圖形ABD對(duì)線ABD交點(diǎn)O點(diǎn)E邊CD的點(diǎn),若形ABD周為1∠BA=6°,△OE面積(A.B. 2C.D. 4【答】A【考角的積等邊角的定性勾定形性相三形的判定性質(zhì)【解解】:形ABD周為1,菱形BCD的長(zhǎng)為4,∵∠BD=0°,∴△AD等三形,【解解】:形ABD周為1,菱形BCD的長(zhǎng)為4,∵∠BD=0°,∴△AD等三形,又∵O是形角線ACD的點(diǎn),∴ACBD,在R△AOD中,∴AO=,∴AC=A0=4,∴S△CD=·O·A=××4=4,又∵、E分是點(diǎn),∴OEAD,∴△CE△CA,∴,∴,∴S△OE=S△AD=×4=.故答為A.【分】據(jù)形性得菱邊為4,A⊥B,由個(gè)是60度腰三形等邊三角得ABD是邊角形在t△OD,據(jù)勾定得O=,ACA0=4,根據(jù)角面公得△ACD=·OD·C=4 ,據(jù)中線得O∥A由相三角形質(zhì)得,從而出CE面積.(疆產(chǎn)設(shè)團(tuán)5圖矩片ABDA=6cB=cm現(xiàn)其沿AE折使點(diǎn)B落邊AD的點(diǎn)B1處折與邊BC于點(diǎn)則CE的()A.6cm B.4cm C.3cm D.2cm【分】據(jù)折性可得B=AB1【分】據(jù)折性可得B=AB1=9°,=AB1然求四形AB1是正形,再根正形性得BE=A,后據(jù)C=BBE,入據(jù)行算可得.【解】:沿E點(diǎn)B邊AD上點(diǎn)B1∴∠B∠A1E=0,ABB1,又∵BAD90,∴四形BEB1正形,∴BE=B=6m,∴CE=C﹣E=﹣6=cm.故選D.【點(diǎn)評(píng)】本題考查了矩形的性質(zhì),正方形的判定與性質(zhì),翻折變換的性質(zhì),判斷出四邊形ABEB1正形解的鍵.1新生建兵5點(diǎn)P邊為1形ABD線AC上一個(gè)動(dòng)點(diǎn)MN別是B,BC邊的點(diǎn)則MPN最值()A.B.1C.D.2【分作點(diǎn)M于AC的對(duì)點(diǎn)′連接′N(xiāo)交AC于P此時(shí)MP+P最小后證明形ABM為四邊,可出P+NM′N(xiāo)=B=.【解】:圖,作點(diǎn)M關(guān)于AC的稱(chēng)點(diǎn)′,接′N(xiāo)交AC于,時(shí)MPNP最值最小為′N(xiāo)的長(zhǎng).∵形ABD于AC對(duì),M是AB邊的點(diǎn),∴M是AD的點(diǎn),又∵N是C上中,∴AM∥B,A′=N,∴四形BN′平邊形,∴M′=AB1,∴MP+P=′N(xiāo)=即MP∴M′=AB1,∴MP+P=′N(xiāo)=即MPP的小為,故選B.【點(diǎn)題查是對(duì)稱(chēng)最路問(wèn)及形的質(zhì)熟兩之線段短知識(shí)是解此的鍵.11.(川3分在ABC若O為C邊中則ABAC2=2O2+2O2成據(jù)上決如問(wèn)如在形DEG已知DE==3點(diǎn)P在以DE直的圓運(yùn)則PF2PG2最值( )A.B.C.34D.10【考】M:與的置關(guān);L:形性.【分點(diǎn)M為E點(diǎn)點(diǎn)N為FG的點(diǎn)接MN則NM長(zhǎng)定值利用三角的邊系出NP最值再用PFPG2=2N2+2N2即求論.【解點(diǎn)M為E的中點(diǎn)N為G中接N半于點(diǎn)P此時(shí)N小值.∵DE=,形DEG形,∴GF=E,N=E,∴MP=N=DE=2,∴NP=N﹣P=E﹣M=1,∴PF2PG2=PN2+FN22×1+2×2=1.故選D.【點(diǎn)本考查點(diǎn)圓的置矩的質(zhì)以三形變關(guān)用角三邊關(guān)出PN的小解題關(guān).1(津3分圖正形的一動(dòng),下1(津3分圖正形的一動(dòng),下線的長(zhǎng)于中別為 ,最小的( )的點(diǎn)對(duì)線上A.【答】DB.C.【解】析點(diǎn)E于BD對(duì)點(diǎn)E在段D上得E為D點(diǎn)接A′與BD的點(diǎn)為點(diǎn)PPAPE最值是段A的長(zhǎng)過(guò)明角角形DE≌直角形ABF即得.詳解點(diǎn)E于BD對(duì)點(diǎn)E,接A′交BD于點(diǎn)P.∴PA+E最值A(chǔ)′;∵E為AD的點(diǎn),∴E為CD的點(diǎn),∵四形BCD是方,∴AB=C=C=D,∠BFADE=9°,∴DE=B,∴ΔAFΔADE,∴AE=AF.故選點(diǎn)題查了對(duì)-最路問(wèn)方性題要是用兩點(diǎn)間段最短和任兩之大于三因只作點(diǎn)點(diǎn)E關(guān)線BD的稱(chēng)點(diǎn)A′或′再接E′或A′即.1(四自4如邊為a正形ABD邊BC繞點(diǎn)B逆針轉(zhuǎn)60°得段B,接AM延交CD于,接M,△MNC的積()A.B.C.D.【分作MGBC于GH⊥CD于根旋變的性得△MCA.B.C.D.【分作MGBC于GH⊥CD于根旋變的性得△MC等三角據(jù)直角角的質(zhì)勾定理別出H、H據(jù)三形面公計(jì)即可.【解】作M⊥BC于GMHCD于H,則BGGCABMGCD,∴AM=N,∵M(jìn)HCD∠D90,∴MHAD,∴NH=D,由旋變的質(zhì)知△MBC是邊角,∴MC=C=,由題得∠MD=3°,∴MH=MC=a,CH=a,∴DH=﹣a,∴CN=H﹣H=a﹣(﹣a=( ﹣1),a2,∴△MC面=××(1)a=故選C.【點(diǎn)題查是轉(zhuǎn)變的質(zhì)正形性質(zhì)掌正形性平線性質(zhì)是解的鍵.14(臺(tái)·)圖1的矩形ABCD中有點(diǎn)E在AD,今以BE折線將A點(diǎn)往右圖2所再過(guò)A點(diǎn)與D直直交CD于F圖3所若AB6,BC=1,∠EA=0,圖3中AF的度何()A.2B.4C.2D.4【分作A⊥C于則四形AFA.2B.4C.2D.4【分作A⊥C于則四形AFH矩,A=CH,H=C=3直角角即解問(wèn);.在RtAH,解【解】作A⊥BC于H則邊形AFH形,A=C,AHCF=3.在R△AHB中∠AH=3°,∴BH=B?cs3°=,∴CH=C﹣H=1﹣94,∴AF=H=,故選B.【點(diǎn)題查折換形性股理直三形知解的鍵是學(xué)會(huì)加用助,造直三形決題屬于考考型.15(江波4分)形ACD內(nèi)將張邊分為a和(ab)正形紙片圖圖2種放圖1圖2中張方形片有分疊矩形未被這兩正形片蓋部分陰表設(shè)圖1中陰部的為S1圖2陰部分的面為S當(dāng)A﹣AB2時(shí),S﹣S1值()A.2aB.2bC.2﹣2bD.﹣【考】方的質(zhì)【分】用積和分別出S1和S,利用式混運(yùn)計(jì)它們差.【解】:S=(B﹣)?a(C﹣bS2=A(A﹣a+(﹣b(ABaA﹣a(ABa)a+ABbD﹣a∴S2S1=A(A﹣∴S2S1=A(A﹣(﹣b(A﹣aABa?a(A﹣b(A﹣aAD﹣a(﹣AB+)(A﹣a(a﹣a)b?A﹣a﹣bAB+=b(A﹣A)=b.故選B.【點(diǎn)本考查整的混運(yùn)整體思在整運(yùn)中為見(jiàn)適時(shí)用思想可問(wèn)簡(jiǎn)化并迅速解相問(wèn)時(shí)應(yīng)意看整的數(shù)式常用括號(hào)括來(lái)也查正形的質(zhì).16(重(A·4)下命正的是A.平四形對(duì)線相垂平分C.菱的角互平且相等【考】邊的角的性質(zhì)【解析】A.錯(cuò)。行邊的角線相分。B.錯(cuò)。形對(duì)線相平且等。B.矩的角互垂平分D.正形對(duì)線相直平分C.錯(cuò)。形對(duì)線相垂平,一相。D.正。方的角互相直分另,方形對(duì)線相?!军c(diǎn)評(píng)】題要查邊形對(duì)線性,于中當(dāng)?shù)膯巍?7(廣·3分下列述形,軸稱(chēng)圖但是心稱(chēng)形的()A.圓B.形C.行邊形D.腰角形【分】據(jù)對(duì)圖與中對(duì)圖的念解.【解】:、軸圖形也中對(duì)圖,故選錯(cuò);B、軸稱(chēng)形也心對(duì)圖,此項(xiàng)誤;C、是對(duì)圖,心對(duì)圖,此項(xiàng)誤;D、軸稱(chēng)形不心對(duì)圖,此項(xiàng)確.故選D.【點(diǎn)】題查中對(duì)稱(chēng)形軸稱(chēng)形概念軸稱(chēng)形關(guān)是尋對(duì),圖形部沿稱(chēng)折后可合中對(duì)圖是要找稱(chēng)心旋轉(zhuǎn)80后原圖重合.1北?2根長(zhǎng)為a(:m)的鐵首尾接成個(gè)方要將它按圖7的式外擴(kuò)1(位:m),得新方形則根絲增( )A.4..(a4)mD.A.4..(a4)mD.(a)m1廣3點(diǎn)P菱形ABD上一動(dòng)它點(diǎn)A出在AB→→D路徑速動(dòng)點(diǎn)PAD面為yP的動(dòng)時(shí)為則y于x函數(shù)象大致為()A.B.C.D.【分設(shè)形高為h即是個(gè)分點(diǎn)P在AB在C和在CD上三情,利用角的積式式求相的數(shù)系,然選答即.【解】:三情:①當(dāng)P在B上,圖1,設(shè)菱的為,y=AP?,∵AP隨x的大增h不,∴y隨x增而大,故項(xiàng)C正;②當(dāng)P故項(xiàng)C正;②當(dāng)P邊BC上,圖2,y=AD?,AD和h不,∴在個(gè)程,y不,故項(xiàng)A正;③當(dāng)P邊CD上,圖3,y=PD?,∵PD隨x的大減h不,∴y隨x增而小,∵P從點(diǎn)A發(fā)在B→CD徑速動(dòng)點(diǎn)D,∴P三線上動(dòng)時(shí)間同,故項(xiàng)D正;故選B.【點(diǎn)題查動(dòng)問(wèn)題函圖形性質(zhì)根點(diǎn)P的置不同分段求出△PD面的達(dá)是解的鍵.20(218四省山市2分)下命為命是(A.兩直被組行所截所的應(yīng)段比例B.相三形積比于相比C.對(duì)線B.相三形積比于相比C.對(duì)線相直四形是形D.順連矩各的點(diǎn)所的邊是方形【答】A【考】題定理【解解】:A據(jù)平線線成例理即判正,A符題意;B.相三形積比于相比平,錯(cuò),B符題;C.對(duì)線相直平四邊是形故誤C不合意;D.順連矩各的點(diǎn)所的邊是菱,故誤D符題;故答為:.【分】A根平線線段比定即判對(duì)錯(cuò);B.根相三形性即可斷錯(cuò);C.根菱的定可斷對(duì);D.根矩的質(zhì)三形中線理可斷錯(cuò);21(018四省州市3分如,方形ABCD中,,F(xiàn)分在邊D,D上AFBE相交點(diǎn),若AE=EDF=CF的值()A.B.C.D.【分】圖,F(xiàn)∥A,交AB于N,交BE于M設(shè)DE=,則AE3a利平行分段成比定解問(wèn)即;【解】:圖,F(xiàn)∥AD交B于N交BE于M.∵四形BCD是方,∴ABCD∵F∥A,∴四形NFD是行形,∵∠D90,∴四形NFD是析,∵AE=DE設(shè)∵∠D90,∴四形NFD是析,∵AE=DE設(shè)E=,則=3a,D=A=CDFN=a,=DF=2,∵AN=N,N∥E,∴BM=E,∴MN=a,∴FM=a,∵AEFM,∴===,故選C.【點(diǎn)題查方的性行分段比例理三形位定理知解題的鍵學(xué)添常輔助構(gòu)平行解問(wèn)會(huì)用參解問(wèn)于考常考型.22(208四省市圖方形ABCD邊為2P為D中連結(jié)P點(diǎn)B作B⊥AP于點(diǎn),長(zhǎng)CE交AD于點(diǎn)F過(guò)點(diǎn)C作CHBE點(diǎn)G交AB于點(diǎn),接HF.列論確是()D.HF=EFCFA.CE=B.EF=C.co∠CP=【考S似角判定性K等形的定性L形的質(zhì);T7:直三形.【分首明BHA推出G=B推出CE=再證△AC△CER△HF≌R△HFA利全三形質(zhì)即一判.【解】:接H.∵四形BCD是方,∴CD=B═C=A∵四形BCD是方,∴CD=B═C=A=2CDB,∵BEAPCHBE,∴CHPA,∴四形PAH是行形,∴CP=H,∵CP=D=,∴EH=B∵H⊥B,∴BG=G,∴CB=E=,選項(xiàng)A∵CH=H,B=C,H=H,∴△AC△CE,∴∠CH=CEH90,∵HF=F,E=H,∴RtHF≌R△HF,∴AF=F設(shè)E=AFx,在R△CDF中有2+(﹣x)=(+x),∴x=,∴EF=,故B誤,∵PACH,∴∠CP=ECH∠BH,∴co∠CE=co∠BH==故C誤.∵HF=,EF=,F(xiàn)=∴HF2EF?C故D正,故選D.【點(diǎn)題查方的性等角的定和質(zhì)勾定角三函等知識(shí)解的鍵是會(huì)加常輔構(gòu)全三角識(shí)解的鍵是會(huì)加常輔構(gòu)全三角解問(wèn)于考選題壓軸題.二.填空題1(208川眉市1分)圖形OBC邊OA在x軸負(fù)軸上O是標(biāo)點(diǎn),A點(diǎn)標(biāo)-1,0角線C和OB交點(diǎn)D且A·OB160若比函數(shù)=<0的象過(guò)點(diǎn)D與BC的長(zhǎng)交點(diǎn)E則S△OC∶S△OA= .(x【答】15【考】比函數(shù)k的何義全三形的定性,形性質(zhì)【解解】:作G⊥AOBHAO,∵BOAC=60,∴S菱形=·BO·C=8,∴S△OAC=S菱形=4,∴·AO·G=4,∵A(10,∴OA=0,∴CG=,在R△OGE中,∴OG=,A=4,∴C(6,8∵△BH△CO,∴BH=G=8AH=G=6,∴B(16,∵D為BO的點(diǎn),∴D(∴BH=G=8AH=G=6,∴B(16,∵D為BO的點(diǎn),∴D(8,4又∵D在比函上,∴k=-×4-3,∵C(6,8∴E(,8又∵E在比函上,∴8a=32,∴a=-∴E(4,∴CE=,∴S△OCE=·CE·G=×28=8,S△OAB=·O·BH=×10×=40,∴S△OC:S△OA=8:0=15.故答為::5.【分】:作G⊥O,H⊥AO根菱和角的面公可得SOAC=S菱形=40從而得OA10,G=8在R△OE據(jù)股理得OG6G=4即(-,8據(jù)全三形的性和點(diǎn)標(biāo)式得B-168D(8,4,將D代反例數(shù)析式得,設(shè)(a8點(diǎn)E坐代入比函解式可得-4據(jù)形面公分別得S△OCE和S△OAB ,從得S△OC:S△OA.2(西林?3分如圖矩形ABC的邊AB與x交點(diǎn)D與比函數(shù) (k>0)在第象的像點(diǎn)E∠AO=3°點(diǎn)E的坐為ΔDE的積是則k的值是 【答】【解分過(guò)E作E⊥x垂為則EF【答】【解分過(guò)E作E⊥x垂為則EF求DEF30從而E=根據(jù)ΔODE的積是求出OD=從而F=3,以k=3.詳解過(guò)E作F⊥x軸垂為F,∵點(diǎn)E的坐為,∴EF=,∵ΔOE面是∴OD=,∵四形ABC是形∠AOD30,∴∠DF=3°,∴DF=∴OF=3 ,∴k=3 .故答為3 .點(diǎn)睛本考了比函數(shù)析的法求點(diǎn)E坐是題鍵.3(廣廣·3分)圖若形3(廣廣·3分)圖若形BCD頂點(diǎn),B的標(biāo)別3,0(-,0)點(diǎn)D在y上則點(diǎn)C的坐是 ?!敬穑?4)【考】標(biāo)圖性,菱的質(zhì)矩的定與質(zhì)【解解】:∵(3,∴AB=,A=3BO=,又∵形ABD菱,∴AD=D=B=AB5,在R△AOD中,∴OD=,作C⊥x(-,),∴四形ECD為形,∴CE=D=,OECD=,∴C(5,).故答為(-54).【分根據(jù)AB點(diǎn)標(biāo)可出形BCD邊為在RtAOD中根勾股理求出OD4作C⊥x軸得四形ECD為形據(jù)矩性得C坐.4(廣深·3)如,形ACD方形∠CA∠AF直角點(diǎn)、A、B三共,AB4陰影分面是 .【答】8【考】等角的定與質(zhì)正形【答】8【考】等角的定與質(zhì)正形性質(zhì)【解解】:邊形CFD是方,∴∠CF=9°AC=F,∴∠CE+FAB90,又∵CEA和ABF都角,∴∠CE+ACE90,∴∠AE=FA,在△AE△FB∵,∴△AE△FA(AS∵AB=,∴CE=B=,∴S陰影S△ABC=故答為8.·AB·E=×4×=8.【分析根據(jù)方的質(zhì)得∠AF=0°AC=A再根據(jù)角內(nèi)角和角的余相等得∠AE=FAB由等角形判定AAS△AE△FAB由等角的質(zhì)得C=AB4,根據(jù)角的積式可得影分面.5(廣廣3如圖9E平四形ABD邊AB的直分線垂為點(diǎn)O,CE與DA延交于點(diǎn),連接ACBEDO,DO與AC交于點(diǎn)則下結(jié):①四形CBE是形∠ACD∠BE③AFBE=:3④其中確結(jié)有 (寫(xiě)有確論序號(hào))【答】②④【考角的積全等角的定性線垂平線性平四形的性質(zhì)相三形判與性質(zhì)【解【答CE平四形ABD邊AB的直分A=BO,AOE∠BOC=9°,C∥E,E=B,CA=B,∴∠OE=OB,∴△AE△BO(AA∴AE=C,∴AE=E=C=C,BOC=9°,C∥E,E=B,CA=B,∴∠OE=OB,∴△AE△BO(AA∴AE=C,∴AE=E=C=C,∴四形CBE是形,故①確.②由四形CBE是,∴AB平∠CA,∴∠CO=BA,又∵形ABD平邊形,∴BACD,∴∠CO=AC,∴∠AD=BAE.故②確.③∵E直分線B,∴O為AB中又∵形ABD平邊形,∴BACDAO=AB=CD,∴△AO△CF,∴= ,∴AF:C=13,∵AC=E,∴AF:E=13,故③誤.④∵·C·OC,由知AFAC=:3,∴,∵= ×CD·O=,∴=+==,∴故④確.故答為①④.【分析】①根據(jù)平行四邊形和垂直平分線的性質(zhì)得AO=B,∠AO=∠BC=0°,C∥AE,AE=B故答為①④.【分析】①根據(jù)平行四邊形和垂直平分線的性質(zhì)得AO=B,∠AO=∠BC=0°,C∥AE,AE=BA=C根據(jù)SA得△AE△BO由三角性得E=C據(jù)四相的四邊形菱得①確.②由菱形性質(zhì)得∠AO=∠AE,根據(jù)平行四邊形的性質(zhì)得BA∥CD,再由平行線的性質(zhì)得∠CAO=AC,量換ACD=BA;②確.③根平四形垂平分的得B∥CAO=AB=CD從得AF∽△CD,由相三形質(zhì)得=從而出F:A=1:,即:BE=13,③誤.④由三角形面積公式得·C·OC,從③知 A:AC1:3,所以=+==,從而得出故④確.6(川賓3如圖在形ACDAB=3B=2點(diǎn)E為段B上動(dòng),將△CE沿E疊點(diǎn)B在形點(diǎn)F處列結(jié)正的②③(出有正確論序)①當(dāng)E為段B點(diǎn)AF∥C;②當(dāng)E為段B點(diǎn)AF=;③當(dāng)、、C點(diǎn)線,AE=;④當(dāng)、、C點(diǎn)線,△CF△AE.【考】P:折換折疊題;K:等形的定LB矩的質(zhì).【分】?jī)汕榉智蠼饪蓻Q題;【解】:圖1中當(dāng)AEEB∵AE=B=E,∴∠EF=EF,∵∠CF=CE,∠EFEAF+EF,∴∠BC=EA,∵AE=B=E,∴∠EF=EF,∵∠CF=CE,∠EFEAF+EF,∴∠BC=EA,∴AFEC故正,作E⊥A,則M=F,在R△ECB中EC==,∵∠AE=B=9°∠E=∠CE,∴△CB△EA,∴=,∴=,∴AM=,∴AF=AM=,②確,如圖2中當(dāng)、、C線時(shí)設(shè)E=.則EBEF=﹣,AF=﹣,在R△AEF中∵A2=AFEF2,∴x2(﹣2)2(3x),∴x=,∴AE=,③確,如果△CF△AE∴AE=,③確,如果△CF△AE,∠EAF∠EF=ECB30,顯不合意故錯(cuò)誤,故答為②.【點(diǎn)題查折換等角的質(zhì)勾股理矩的質(zhì)相似角的判定和質(zhì)知,題關(guān)鍵靈運(yùn)所知解決題屬中填題中.(四川貢4如△AC中AC=C=2B=將沿B折得△AD,則四形DBC的狀菱點(diǎn)PF分為段ABADDB任點(diǎn)則PE+的最值是.【分】據(jù)意明邊相即得菱;出F關(guān)于AB的稱(chēng)點(diǎn)再過(guò)M作ME⊥AD交ABA點(diǎn)P此時(shí)E+PF最,出ME即.【解】:△AC沿B翻得△AD,∴AC=D,C=B,∵AC=C,∴AC=D=B=B,∴四形DBC是形,故答為;如圖作出F關(guān)于AB的稱(chēng)點(diǎn)M再過(guò)M作MEAD過(guò)點(diǎn)A作作出F關(guān)于AB的稱(chēng)點(diǎn)M再過(guò)M作MEAD過(guò)點(diǎn)A作N⊥C,∵ADBC,∴ME=N,作C⊥A,∵AC=C,ABA點(diǎn)P時(shí)P+PF小時(shí)PE+F=M,∴AH=,由勾定可,C=,∵,可得AN=,∴ME=N=,∴PE+F小為,故答為.【點(diǎn)題要查徑和短題會(huì)合對(duì)稱(chēng)知和垂段短”基事實(shí)分析最路是題關(guān)鍵.8(北門(mén)3分如圖在面角標(biāo)系xOy數(shù)y=(k>>0圖象經(jīng)菱形ACD的頂點(diǎn)D和邊AC的中點(diǎn)E菱形ACD邊長(zhǎng)為3則k的為.【分】過(guò)D作D⊥x于Q,過(guò)C作C⊥x軸于,過(guò)E作EF⊥x【分】過(guò)D作D⊥x于Q,過(guò)C作C⊥x軸于,過(guò)E作EF⊥x軸于設(shè)D點(diǎn)的標(biāo)為(,b,出CE坐標(biāo)代函解式求出,根勾定求出,可請(qǐng)求出案.【解答】解:過(guò)D作DQ⊥x軸于Q,過(guò)C作CM⊥x軸于M,過(guò)E作EF⊥x軸于F,設(shè)D的標(biāo)(,b則C的標(biāo)(a3,∵E為AC的點(diǎn),∴EF=CM=b,AF=AM=OQ=a,E點(diǎn)坐為3+a,b把DE坐代入y=得:k=a=(+a)b,解得a=,在R△DQO中由股理得a2+b=32,即22+2=,解得b=∴k=a=2(負(fù)舍,,故答為2.【點(diǎn)題查勾定理反例數(shù)象點(diǎn)的標(biāo)征菱的質(zhì)等識(shí)能得出于、b的程此題關(guān).9(株市?3分如圖形ABD9(株市?3分如圖形ABD對(duì)線AC與BD相點(diǎn),A=10PQ為A、AD的點(diǎn)則PQ的的度 .【答】25【解】析根矩的性得ACBD=0,=DO=B=5再據(jù)角中位定可得PQDO=.5.詳解∵形ABD形,∴AC=D=1,B=DOBD,∴OD=D=,∵點(diǎn)、Q是A,AD的點(diǎn),∴PQ是△OD中線,∴PQ=O=25.故答為2..點(diǎn)題要考了形的及三形位線鍵是握形對(duì)線且互相分.10(山青·3分)圖已正形CD邊為5點(diǎn)、F分在A、DC上,A=DF2,E與AF交點(diǎn)G點(diǎn)H為F點(diǎn),接H則GH的為.【分】據(jù)方的條邊相得ABAD每一角是角得AE=∠=9°,然后用邊邊證△AB≌△AF得∠BEDAF一得AGE∠BF=90而知GH=BF利勾定求出F長(zhǎng)可出.【解】:四形CD正形,∴∠BE=D=9°AB=,在△AE△DF∵,∴△AE△DA(SS∴∠AE=DA,∵∠AE+BEA90,∴∠D∵,∴△AE△DA(SS∴∠AE=DA,∵∠AE+BEA90,∴∠DF+BEA90,∴∠AE=BGF90,∵點(diǎn)H為F中,∴GH=BF,∵BC=、C=C﹣DF5﹣3,∴BF==,∴GH=BF=,故答為:.【點(diǎn)本考查正形的等三形判定性直角角兩銳互知識(shí),握角全的定方與方的質(zhì)解題關(guān).11.(東海8分)圖將形BC紙片折,點(diǎn)B與D邊的點(diǎn)K重合EG為痕點(diǎn)C與AD邊上點(diǎn)K合FH為已∠1=7.°2=7°EF=求BC的.+1,【分析由題知∠318°﹣2∠=45、∠418°﹣2∠=30、BEKE、F=FC作KM⊥BC設(shè)M=,知M=MF=x,據(jù)EF的求得=1,進(jìn)步解得.【解題意得∠3=10﹣21=4°∠4=10﹣22=3°E=KEKF=C,如圖點(diǎn)K作K⊥BC點(diǎn)M,設(shè)KMx則EMx、F=x,∴x+x=+1,解得x=,∴EK=、KF2,∴BC=E+E+FCEK+F+K3++,∴BC的為3++.【點(diǎn)本主要查折變?cè)O(shè)KMx則EMx、F=x,∴x+x=+1,解得x=,∴EK=、KF2,∴BC=E+E+FCEK+F+K3++,∴BC的為3++.【點(diǎn)本主要查折變解的關(guān)是握翻變的質(zhì)折前后形狀和大不,置化對(duì)應(yīng)和應(yīng)相.12(京2)圖在形CD中,E是邊B的接E交對(duì)線于點(diǎn)F,若B4,D3,則CF的為 .CDAEB【答】103【解】四形CD是矩,∴BCD4,B∥CD,C9,在Rt△C中,C9,∴C D2CD25,∵E是B中點(diǎn)∴E1B1CD,22∵B∥CD,∴FE1,∴CF2C10.CF CD 233【考】形性,股定,似角的質(zhì)及定13(安?4分)矩形BCD中,B=,BC.點(diǎn)P在形ACD內(nèi),點(diǎn)E邊BC上,足PB∽△BC若△AD等三形則PE的為數(shù) _.【答】3或12【解分】△PB∽△DC可∠PB=∠C,而確點(diǎn)P在BD上,后根據(jù)△AD等三形分DPDAAP=P種進(jìn)行論可.【詳】四形BCD矩形∴BAD∠C90,CD=B=,∴D=1,∵△PE△DB,∴∠PE=DB,點(diǎn)P在BD上,如圖,當(dāng)DP=A=8時(shí)P=2,F(xiàn)∵△PE△DB,∴PECD=∵△PE△DB,∴PECD=B:B=:1,∴PE6=:1,∴PE=.2;如圖,當(dāng)AP=P,時(shí)P為BD中,∵△PE△DB,∴PECD=B:B=:2,∴PE6=:2,∴PE=;綜上PE的為12或,故答為1.2或3.【點(diǎn)】題查相三角的質(zhì)等三形的質(zhì)矩的質(zhì),確定點(diǎn)P段BD上題的鍵.14湖北省武漢3分正形ACD邊D作等△AE∠BC度數(shù)3°或15°.【分】等△AE正方的部外兩情況別解得.【解】:圖,∵四形BCD為方∵四形BCD為方△ADE為邊角,∴AB=C=C=ADAE=EBAD=ABC∠BD=ADC0°∠AE=∠DE∠DA60°,∴∠BE=CDE15°又ABAEDC=E,∴∠AB=CED15,則∠BC=AE﹣∠EB∠CED30.如圖,∵△AE等三形,∴AD=E,∵四形BCD是方,∴AD=C,∴DE=C,∴∠CD=EC,∴∠CE=AD﹣∠DE=°﹣6°=0,∴∠CD=ECD=(1030°=7°,∴∠BC=30﹣7°×﹣60=15°.故答為30或50.【點(diǎn)題查正形的質(zhì)等三形性質(zhì)等三形判與性記各性質(zhì)準(zhǔn)識(shí)是題關(guān)鍵.15湖南省常德3分如,矩形BCD沿EF疊使點(diǎn)B在D邊的點(diǎn)G處點(diǎn)C點(diǎn)H,知∠DH=3°接B則∠AB=75°.【分析由折的性知:GEBE,EGH∠AB90°從而證明EBG∠EGB然后再根∠EH∠EG=∠C﹣∠B∠BC∠GH由行的性可∠AGB∠GC,從而證AGB∠BH此可答.【解】:折的質(zhì)可:G從而證AGB∠BH此可答.【解】:折的質(zhì)可:G=B,∠GHABC=9°,∴∠EG=EG.∴∠EH∠EG=∠BC∠EB,:∠BC∠BG.又∵A∥B,∴∠AB=GB.∴∠AB=BG.∵∠DH=3°,∴∠AH=10,∴∠AB=∠AGH75,故答為75.【點(diǎn)本主要查折變解的關(guān)是練掌翻變的質(zhì)折疊后的形狀大不,置化,應(yīng)和應(yīng)相.16.東州?5分)圖在形BCD,AB=,B=4點(diǎn)、F別在C、上若AE=,EAF45,則F長(zhǎng)為.【分取B點(diǎn)連接ME在AD上取NDDF設(shè)D=DNx則F=x,再用矩形性和知件明△AE△FN用似三形性應(yīng)的比相可求出x值在角形ADF利勾定即求出F長(zhǎng).【解】取AB的點(diǎn)M連接ME在D取NDDF設(shè)D=DNx,∵四形BCD是形,∴∠D∠BD=B=9°D=BC=,∴NF=x,A=4x,∵AB=,∴AM=M=,∵AE=,AB2,∴BE=,∴ME==,∵∠EF=4°,∴∠ME+NAF45,∵∠ME+AEM45,∴∠MA=NA,∴△AE△FN,∴,∴,解得x=,∴AF==.故答為:.【點(diǎn)本考查矩的性相∵∠EF=4°,∴∠ME+NAF45,∵∠ME+AEM45,∴∠MA=NA,∴△AE△FN,∴,∴,解得x=,∴AF==.故答為:.【點(diǎn)本考查矩的性相三角的斷和質(zhì)及股理運(yùn)確加輔助構(gòu)相三形解題關(guān),17.西?3分在正形中, =6,接,,是正形上對(duì)線上一點(diǎn)若 =2,則的為 .【解析】題察問(wèn)題涉直三形輔助股理思想綜性較強(qiáng)。HAPADADD30°PPBCBCBC圖1圖2圖3首,能斷符條的P點(diǎn)有3個(gè):圖,P=2;圖2,為△PD是直三形PD=PA以∠PA=3°所以PA=如圖3設(shè)PH=,則PA=,PD=,,以,以A=【答案】 2,,★★★18(山棗莊4)如,正形ABD,AD=2,邊BC點(diǎn)B逆時(shí)旋轉(zhuǎn)30°到段BPPD=,,以,以A=【答案】 2,,★★★18(山棗莊4)如,正形ABD,AD=2,邊BC點(diǎn)B逆時(shí)旋轉(zhuǎn)30°到段BP連接AP并延交CD點(diǎn)E接C則形PE面為 9﹣5.【分析】根據(jù)旋轉(zhuǎn)的思想得PBBC=B,∠PBC30°,推出△AP是等邊三角形,得到∠過(guò)P作PFCD于,BAP=6APAB=2于是到論.角三形到E=2﹣2P=4﹣2【解】:四形CD正形,∴∠AC=9°,∵邊BC繞點(diǎn)B時(shí)轉(zhuǎn)3°到段B,∴PB=C=A,PBC30,∴∠AP=6°,∴△AP等三形,∴∠BP=6°AP=B=2,∵AD=2,∴AE=,D=2,∴CE=2﹣,PE4﹣2,過(guò)P作P⊥CD于,∴PF=PE=2﹣3,∴三形CE面=CE?F=×2﹣2)(2﹣39﹣5,故答為9﹣5.【點(diǎn)題查旋的性方的質(zhì)邊三形判和質(zhì)解直三【點(diǎn)題查旋的性方的質(zhì)邊三形判和質(zhì)解直三形,正確作輔線解的關(guān).19.(川都3分)圖在形中以下驟圖①別點(diǎn)和為圓以于的長(zhǎng)徑作兩相于點(diǎn)和 作線交的于為點(diǎn).若,,則矩形的對(duì)角線長(zhǎng) .【答】【考】段直分的性,股理作—基作圖【解解】接A,根據(jù)意知N直分AC∴AE=E=3在R△ADE中AD2AE2-2AD2=94=5∵AC2AD2+C2AC2=525=0∴AC=【分】據(jù)圖可知MN垂平分∵AC2AD2+C2AC2=525=0∴AC=【分】據(jù)圖可知MN垂平分C根垂平分的質(zhì)可出AE的長(zhǎng)再根據(jù)勾定可出D,然再用股理出AC即。三.解答題1.(山?12分)(本題12)與踐問(wèn)題情境:在數(shù)學(xué)活動(dòng)課上,老師出示了這樣一個(gè)問(wèn)題:如圖1,在矩形ABCD中,AD=2ABE是AB線上點(diǎn)且BE=AB接DE交BC于點(diǎn)M以DE邊在DE左下作方形DEFG,連接AM判線段AM與DE的位關(guān).探展:奮組現(xiàn),AM垂直平分DE,并展示了如下明方法:證明:BEA, E2D2,D四邊形ABCD形D//.EMEB依1)M ABEM1MM.EB,即AM是△ADE的DE邊上的中線,DE,M.又(依據(jù)2)AM垂直平分DE.反交:(1)證過(guò)中的“據(jù)1據(jù)2”分別是指什么?斷1的點(diǎn)A是否在線段GF直分,直回,必證;(2)小受勤小組啟繼進(jìn)探如圖2連接CE,以CE為邊在CE的左方作正方形CEFG現(xiàn)點(diǎn)G在線段BC的直分上請(qǐng)給證;BC于點(diǎn)H,探發(fā)BC于點(diǎn)H,探發(fā):(3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點(diǎn)C點(diǎn)B都在線AE的垂直平分線上除此之外請(qǐng)觀形ABCD和正方形CEFG的頂點(diǎn)與邊,你還發(fā)現(xiàn)哪頂點(diǎn)在哪條邊的平分線上,請(qǐng)寫(xiě)一個(gè)你發(fā)現(xiàn)的結(jié)論并加以證.【考點(diǎn)平線線成例三合,方形矩性,等【解析】(1)答:依據(jù)1條線被組行所,的應(yīng)段比例或行分線段成比例.依據(jù)2等三形角平線底上中線底上高相合(等三角形的“三線合.答:點(diǎn)A在段GF的垂直平分線.(2)四邊形ABCD矩,點(diǎn)E在AB的長(zhǎng)上,證過(guò)點(diǎn)G作GHECC..四邊形CEFG為方形,GE,E13..C ≌.C.四邊形ABCD形D.D2,E,C2E2.CH.GH垂直平分BC.點(diǎn)G在BC的直分上(3)答:點(diǎn)F在BC邊的垂直平分線或點(diǎn)F在AD垂平分上.證一過(guò)點(diǎn)F作FMBC于點(diǎn)M,過(guò)點(diǎn)E作ENFM于點(diǎn)N.N MF.四邊形ABCD矩,點(diǎn)E在AB的延長(zhǎng)上,EC.四邊形BENM為矩.MN,N.12.四邊形CEFG正形,F(xiàn)C,F.23..E.EF,.E.M.四邊形ABCD矩,D.D2,B.C2M.M.FM垂直平分BC點(diǎn)F在BC的直分線.證二過(guò)F作FNBE交BE延線點(diǎn)N,連接FBFC.四邊形ABCD是矩形,點(diǎn)E在AB的延長(zhǎng)線上,CBE=ABC=N=90°.1+3=90°.四邊形CEFG為正方形EC=EF,CEF=90°.1+2=90°.2=3.△ENF△CBE.NF=BE,NE=BC.四邊形ABCD是矩形AD=BC.AD=2ABBE=AB.設(shè)BE=a,則BC=EN=2a,NF=a.BF=CF.點(diǎn)F在BC邊垂平線.2(東莊?10)如,矩形BCD沿F折疊使點(diǎn)D落在BC的點(diǎn)E,過(guò)點(diǎn)E作E∥CD交AF點(diǎn)G,接D.(1求:邊形EFDG是菱;(2探線段EGGFF之的量系并明理;(3若A=6EG=2,求E的.【分析(3若A=6EG=2,求E的.【分析(1)依翻的性質(zhì)平線的質(zhì)明∠DG=∠DG,而到GDDF,下來(lái)依翻的質(zhì)明DG=GEDF=F;(2連接E交AF于點(diǎn)O菱的質(zhì)知G⊥DEOG=F=GF下證△DF∽△AF由似角性質(zhì)明DF2FO?F是可到E、F、G量關(guān);(3點(diǎn)G作G⊥DC足為H利2結(jié)可得FG4后△AF中據(jù)股定理得AD的再證△FH△FA用相三形性可得GH的最后據(jù)BEADGH解可.【解】()明∵GEDF,∴∠EF=DF.∵由折性可:GGE,D=E,∠GF∠EG,∴∠DF=DF.∴GD=F.∴DG=E=D=E.∴四形FDG為形.(2)G2=GF?A.理由圖1示接DE交AF于點(diǎn)O.∵四形FDG為形,∴GFDEOG=F=GF.∵∠DF=ADF90,F(xiàn)D=∠FA,∴△DF△AD.即DF2FO?F.∴∵FO=GF,F(xiàn)=E,∴EG2=GF?F.(3如圖2示過(guò)點(diǎn)G作G⊥D,足為.∵EG∵FO=GF,F(xiàn)=E,∴EG2=GF?F.(3如圖2示過(guò)點(diǎn)G作G⊥D,足為.∵EG2=GF?F,G=,EG2,∴20=FG(G+6,理:FG26F﹣400.解得FG=,F(xiàn)=﹣0去.∵DF=E=2∴AD=,AF10,=4.∵GHDCADDC,∴GHAD.∴△FH△FA.∴,即=.∴GH=.∴BE=D﹣H=4﹣=.【點(diǎn)】題要查是四形三形綜應(yīng)用解本主應(yīng)了矩的、菱形判和質(zhì)相三角的質(zhì)判股定的利相三角的得到DF2FO?F解答關(guān)依相角形性得GH的解答(3)的關(guān).3(山淄博8)如以AB為徑O外于AB,過(guò)A切線P與BC的延線點(diǎn),∠PB的平線交A,C點(diǎn),E中A,B(A<BD的長(zhǎng)是一二程x25x+0的個(gè)數(shù).(1求:PABD=B?A;(2在段BC是在一點(diǎn)M使四邊形ADE是形若在請(qǐng)予證,求:其面;不在說(shuō)理由.【考:其面;不在說(shuō)理由.【考】M:的合.【分(證∠PE∠BP∠AP∠B從可知PA∽△BD利相似角的性質(zhì)即求答.(點(diǎn)D作D⊥PB點(diǎn)作DGAC點(diǎn)求得E=B=(知,從而知osBDFcoBAC=cs∠PC=從可出AD和DG的度證明邊形ADFE是形此時(shí)F為M,用行邊的面即求形ADE的面.【解】()DP分∠AB,∴∠AE=BP,∵AP與⊙O相,∴∠BP=BAC∠EP=9°,∵AB是⊙O的徑,∴∠AB=BAC∠B90,∴∠EP=B,∴△PE△PB,∴,∴PA?D=P?A;(2過(guò)點(diǎn)D作DFPB點(diǎn)F作D⊥C點(diǎn)G,∵DP平∠AP,AD⊥A,D⊥P,∴AD=F,∵∠EP=B,∴∠AC=BA,易證DFAC,∴∠BF=BA,由于E,D(E<D長(zhǎng)是x﹣5+6=,解得AE=,B=3,∴由1可:,∴co∠AP==,∴co∠BD=co∠AC=,∴,∴DF=,∴由1可:,∴co∠AP==,∴co∠BD=co∠AC=,∴,∴DF=,∴DF=E,∴四形DFE是行形,∵AD=E,∴四形DFE是形,此點(diǎn)F為M點(diǎn),∵co∠BA=co∠AC=,∴si∠BA=,∴,∴DG=,∴在段C是存點(diǎn)M使四形AME菱形其面為DG?E=×=【點(diǎn)題查的合問(wèn)及周定銳三函的義平行邊的判定及面公似角形判與質(zhì)綜程度查學(xué)的活運(yùn)知能力.4.(江揚(yáng)?0分)圖在行形ABCD中DB=A點(diǎn)F是B中,連接DF并長(zhǎng)交CB的長(zhǎng)線點(diǎn),接A.(1求:邊形AEBD是菱;(2若D=,tanDCB,求形(1求:邊形AEBD是菱;(2若D=,tanDCB,求形EBD的積.【分(△AF≌BFE推出D=B知邊形EBD是行邊再據(jù)BDAD可得論;(2解角角求出F的即解問(wèn);【解()明∵邊形BCD是行邊,∴ADCE,∴∠DF=EB,∵∠AD=EF,AFFB,∴△AD△BF,∴AD=B∵A∥E,∴四形EBD是行形,∵BD=D,∴四形EBD是形.(2解∵邊形ABCD是平四形,∴CD=B=,ABCD,∴∠AE=DC,∴ta∠AB=ta∠DB=,∵四形EBD是形,∴ABDEAF=B,F(xiàn)=D,∴ta∠AB= =3,∵BF=,∴EF=,∴DE=3,∴S菱形AEBD=?ABDE=?3=15.【點(diǎn)本考查行邊形判和質(zhì)菱的判和全三【點(diǎn)本考查行邊形判和質(zhì)菱的判和全三形的定質(zhì)等知,題關(guān)是確尋全三形決題,于考考型.5(江鹽城10在方形中對(duì)線所在直上兩點(diǎn)、滿足,接、、、如圖示.(1求:(2試斷邊形;的狀,說(shuō)理.21答1解證正形ABDA=ABD=∠DB=5∠AE∠ADF13°,又∵B=D,∴△AE?AD。(2解解四形AF是形理如:(1得△AB?△DF∴AE=F。在正形BCD中,B=C,∠CD=CDB45,∠CBE∠CF=15,雙∵B=D,∴△CE?CD。∴CE=F。∵BE=E∠CB=∠BE=5°,B=A,∴△CE?AB。∴CE=E,∴CE=E=A=C,∴四形ECF是形?!究肌康冉堑亩ㄅc質(zhì)菱的定正方的質(zhì)【解【析(由方形BCD的質(zhì)得AAD∠AD=ADB45由等的角相等可∠AB=∠AF=1°,又已知BE=D,據(jù)“SS”判定等()由(1全等得AE=F,可測(cè)四全等得AE=F,可測(cè)四形AEF菱由()思可明△E?△AE得到CE=AE不證△CE?ABE得E=A可據(jù)“條相的邊是菱”定即。3.6湖北省宜昌8分如,△ACAB=A,以AB直的交AC于點(diǎn)D,交BC于點(diǎn)E延長(zhǎng)E點(diǎn)F使E=A,接F,F(xiàn)C.(1求:邊形ABFC是菱;(2若A=7BE=,半圓形ABC面.【分(據(jù)角相互分四形平四邊明平四形根鄰邊相等平四形菱即可明;(2設(shè)C=x連接BD利用股理建程可解問(wèn);【解()明∵B是直,∠AB=9°∴AEBC,∵AB=C∴BECE∵AEF,四形BFC是四邊,∵AC=B∴邊形ABFC是菱.(2設(shè)C=x連接BD∵AB是徑,∴∠AB=BDC90,B2﹣AD=CB﹣CD,(7)2﹣7=42x2,解得=1﹣(棄AC=8BD==,S菱形ABFC.【點(diǎn)本考查行邊形判和質(zhì)菱的判線的垂平線的質(zhì)定理等題的鍵靈活用學(xué)識(shí)決題學(xué)添常用助造角角形解問(wèn),于考考題.湖北省宜昌11分矩形ABDAB=2P是邊B一PBC直線PC疊點(diǎn)B對(duì)是點(diǎn)過(guò)點(diǎn)B作BEC足為E在DBE交PC于點(diǎn)F.(1如圖1若點(diǎn)E是D的點(diǎn)求:AE△DE;(2如圖2①證:=BF;②當(dāng)D=2,且AEDE,求osPCB的;③當(dāng)P=9時(shí)求B?EF值.【分()判出=∠D=0,ABDC再出AEDE即得【分()判出=∠D=0,ABDC再出AEDE即得結(jié);(2)①用疊的質(zhì)得出∠GC=∠BC=0°∠BPC∠GPC進(jìn)判斷∠GPF∠PFB即可出論;②判斷△AB∽△EC得出比式建方程即可出AE=,D=16再判斷△EF∽△GP進(jìn)求出PC即可出論;③判出GE∽△AB即可出論.【解】()形ABCD中∠A∠D=0AB=D,∵E是AD中,∴E=D,在△AE△DE,△AB≌△CESAS(2①矩形ABC,BC=9°,∵△BC沿PC折得GPC∴∠GC∠PB=9,∠BC=GP,∵BECG∴B∥P,∠GPF∠PB∴∠PFBFP∴BPBF;②當(dāng)D=25時(shí)∵BEC0°∴∠EB∠CE=9,∵∠AB+ABE90,∠CED∠AE,∵∠A∠D90,△A∽△DC∴,設(shè)AEx∴DE25x∴,∴x9或x=1,∵AEDE∴A=9DE=,∴C=2,BE15,由折得BP=G∴BPF=PG∵B∥P,∴△EF△GC,∴設(shè)BP=BFPG=,∴,y=,∴BP=,在RtPBC中,,co∠PB==;③如,接G,∵∠GF=BAE90,∵BF∵∠GF=BAE90,∵BFPGBF=G∴?BF是形∴B∥G,∠GFE∠AE,∴△GF△EA,∴,E?EF=B?G=1×9=08.【點(diǎn)題四形合題主考了形性質(zhì)全三形判和性似三角形判和質(zhì)折的性,用程思解決題解題關(guān).8.(山青·8分)知如,行邊形BC,角線C與D相于點(diǎn)E,點(diǎn)G為AD的點(diǎn)連接G,CG的長(zhǎng)交A長(zhǎng)線點(diǎn),接F.(1求:ABAF;(2若A=A,∠CD=0°判四形ADF形狀并明的論.【分()要明=CD,F(xiàn)=D可決;(2結(jié):邊形ACDF是矩.據(jù)角相的平四形矩判即可;【解()明∵邊形BCD是行邊,∴BECDAB=D,∴∠AC=DC,∵GA=D∠AG=∠GD,∴△AF△DG,∴AF=D,∴AB=F.(2解結(jié):邊形CDF矩.理由∵A=C,A∥C,∴四形CDF是行形,∵四形BCD是行形,∴∠BD=BCD∴∠BD=BCD12°,∴∠FG=6°,∵AB=G=A,∴△AG等三形,∴AG=F,∵△AF△DG,∴FG=G∵AGGD,∴AD=F,∴四形CDF是形.【點(diǎn)題查行形的定性形定等角的定質(zhì)等識(shí),解題關(guān)是確找等三形決題屬中考考型.(山東安11如ABC中D是B上點(diǎn)E⊥C點(diǎn)F是D點(diǎn),F(xiàn)⊥C點(diǎn)G與E交點(diǎn)H若F=A,AG平分CA,接G,C.(1求:△CG△G;(2小同經(jīng)探現(xiàn):A=ACEC請(qǐng)幫小亮學(xué)明一論.(3若∠=3°判邊形EGF是為形說(shuō)明由.【分()據(jù)件出∠C∠DG=9°∠C=∠GE,據(jù)F是D點(diǎn),F(xiàn)∥A,即可到FG是段D垂直分,而到G=GD∠CG=∠DE用AAS即判定△EC≌△HD;(點(diǎn)G作G⊥AB于P判△CA≌PA得ACA1得E=D可得到R△EC≌R△GD據(jù)ECPD即得出AD=+PD=A+E;(3據(jù)B=3°可∠ADE30而到A=AD故AE=F=FG再四形AEF是平四形即得四形AEF菱.【解】()AF=,∴∠FG=FG,∵AG平∠CA,∴∠CG=FG,∴∠CG=FG,∴ACFG,∵DE∴ACFG,∵DEAC,∴FGDE,∵FGBC,∴DEBC,∴ACBC,∴∠C∠DG=9°∠C=∠GE,∵F是AD的點(diǎn),G∥,∴H是ED的點(diǎn),∴FG是段ED的直分線,∴GE=D∠GD=∠ED,∴∠CE=GD,∴△EG△GH;(2證:點(diǎn)G作G⊥AB于P,∴GC=P而A=A,∴△CG△PA,∴AC=P,由()得E=D,∴RtEC≌R△GP,∴EC=D,∴AD=P+P=ACEC;(3四形AGF菱,證明∵B=3°,∴∠AE=3°,∴AE=AD,∴AE=F=F,由()得AEFG,∴四形ECF是行形,∴四形EGF是形.【點(diǎn)題于邊綜合【點(diǎn)題于邊綜合要查菱的判等角的定和質(zhì)線段垂直平線判定性以及含30角的角三形的性的合運(yùn),用全等角形的對(duì)邊等對(duì)角等是決題關(guān).10(山濰·8分)圖點(diǎn)M正形ABCD邊D一點(diǎn)接M,作DEAM于點(diǎn),B⊥AM點(diǎn)F連接E.(1求:AEBF;(2已知AF=,邊形BED面為2,∠EF的弦.【分()過(guò)明BF≌DEA得到BF=E;(2設(shè)E=,則BF=,E=AF=,用形AED的面等△AE的與△AE的面積之得到?x?+?x?2=2,解程出x到AEF=6則EFx﹣=4然利用股定理出B,后正弦定求.【解()明∵邊形BCD為方,∴BA=D∠BA=9°,∵DEAM于點(diǎn),B⊥M于點(diǎn),∴∠AB=9°∠DA=9°,∵∠AF+BAF90,AD+∠AF=0,∴∠AF=EA,在△AF△DA中,∴△AF△DE(AS∴BF=E;(2解設(shè)A=x則Bx,DEAF=,∵四形BED的積為4,∴?x?+?x?2=2,得x6,x2﹣(去,∴EF=﹣24,∴BF=E;(2解設(shè)A=x則Bx,DEAF=,∵四形BED的積為4,∴?x?+?x?2=2,得x6,x2﹣(去,∴EF=﹣24,在R△BEF中BE==2,∴si∠EB===.【點(diǎn)題查正形的質(zhì)正形四邊都等四角是角方具有四邊行邊形形一性運(yùn)用等角的識(shí)決線相的問(wèn)題.考了直三形.11.(甘白,西,威)知形中是邊的個(gè)點(diǎn)點(diǎn),分別是,,的中.(1求:(2;,當(dāng)邊形是形時(shí)求形的面.【答】1證見(jiàn);().【解】分】1據(jù)點(diǎn),H是BCCE中點(diǎn)根中線性有F∥B,點(diǎn)G是BE的點(diǎn),即可明BGF≌△FH..(2當(dāng)邊形EGFH是方形,知F⊥H且,可求出矩的積.【解】1∵點(diǎn)F,H別是C,CE的點(diǎn),∴FHBE,.∴.又點(diǎn)G是BE的點(diǎn),∴.又∵∴△BF,≌△HC.(2當(dāng)邊形EGFH是方形,知F⊥H又∵∴△BF,≌△HC.(2當(dāng)邊形EGFH是方形,知F⊥H且∵在BEC中點(diǎn),H別是E,EC的點(diǎn),且GHBC,∴∴又∵A∥B,A⊥B,∴,∴.【點(diǎn)查位的質(zhì)方的質(zhì)全三角的定熟掌全等角的判定方是題關(guān).12(京?5圖在邊形CD中,B∥C,BD對(duì)線C,交于點(diǎn)O,C平分D,過(guò)點(diǎn)C作CEB交B的延線點(diǎn)E,連接E.(1求:邊形CD是;(2若B5,D2,求E的.DCABE【解()明∵B∥CD∴CBCD∵C平分∴CBCD∴CDCDO∴DCD又∵DB∴BCD又∵∴DCD又∵DB∴BCD又∵B∥CD∴四形CD是平四形又∵BD∴YCD是形(2解∵邊形CD是,對(duì)線C、D交點(diǎn)O.∴CD.AC1C,BD1D,22∴B1D1.2在Rt△B中,B9.∴A B2B22.∵CEB,∴C9.在Rt△C中,C9.O為C中.∴E1CA2.2【考】形性和定,股理直三形斜中線13京?7分圖在方形CD中,E是邊B的一(與點(diǎn)A,B重合連接E點(diǎn)A關(guān)于線E的對(duì)稱(chēng)為F連接F并長(zhǎng)交C于點(diǎn)G連接G,過(guò)點(diǎn)E作HE交G的長(zhǎng)于點(diǎn)H,連接H.(1求:FC;(2用式示段H與E數(shù)量系并明.DCGHAEB【解()明連接F.∵A,F(xiàn)關(guān)于E對(duì)稱(chēng).∴DD.EE.F在△E和△E中.DDCDEEEE在△E和△E中.DDCDEEEEG∴△E≌△E∴EE.∵四形CD是正形∴AC9.DCD∴EA9∴G18E9∴GC∵DF.DCD∴FCD在Rt△CG和Rt△G.CFHAEBGG∴Rt△CG≌Rt△G∴CGG.(2)H2E.證明在D上取點(diǎn)M使得ME,接E.∵四形CD是正形.∴DB.AC9.∵△E≌△ECD∴EE同理:CGG∴GFF1F1CFGMH22AEB1C42∵EH∴H90∴D18HH4∴DH∴EH.FF∵A9∴∵A9∴ED9∵H90∴DH9∴EH∵DB.ME∴MB在△E和△H中MBEHEH∴△E≌△∴EH在Rt△E中,A9,EM.∴E E2M22E∴H2E.【考方的質(zhì)軸對(duì)的質(zhì)全三形的質(zhì)判腰角三形的性質(zhì)判定1(浙舟6如邊△EF的點(diǎn)EF矩形BCD的邊CCD上且∠CEF45。求證形ABD正形【考】角全的定,形性,方的判定【解分析證矩形ABCD是方形根有組鄰相的形正形可一組鄰相等【解】四形BCD矩形,∴∠B∠D∠C90°∵△AF等三形∴AE=F∠AE=∠FE=°,又∠CF=4°,∴∠CE=又∠CF=4°,∴∠CE=CEF45,∴∠AD=AEB18°-4°-6°=7°,∴△AB△AF(AS∴AB=D,∴形ABD正形。.【評(píng)本考三形全的定矩的質(zhì),方的定屬檔題.15.(廣東廣州·12分)如圖,在四邊形ABCD中,∠B=∠C=9°,AB>CD,AD=ABCD.(1利尺作∠DC平線D,交C點(diǎn)連接E保作痕不寫(xiě)法)(2在()條下①證:A⊥D;②若D=,AB4點(diǎn)MN分是A,B的,求M+MN的小?!敬穑ǎ?①明在AD上一點(diǎn)F使F=D,接E,∵DE平∠AD,∴∠FE=CD,在△FD△CEDF=D,∠∴∠FE=CD,在△FD△CEDF=D,∠DE∠CD,DDE∴△FD△CD(SS∴∠DE=DCE90,F(xiàn)E=18°∠DF=9°∴∠DF=DE,∵AD=B+C,D=D,∴AF=B,在R△AF≌R△AE()∴∠AB=AE,∴∠AD=AEF∠DF=CEF+∠BE=(∠CF+EF)=0?!郃EDE②解點(diǎn)D作D⊥AB點(diǎn)P,∵由可,,F(xiàn)關(guān)于E對(duì),B=F,∴BM+N=F+M,當(dāng)FM,N三共且⊥AB時(shí)有小,∵DPABAD=B+C=6,∴∠DB=ABC∠C90,∴四形PBC是形,∴BP=C=,APAB-P=,在R△APD中DP==,∵FNAB由知AFB=4,∴FNDP,∴△AN△ADP∴,即,解得N=,∴BM+N最值為【考】全三角的定與即,解得N=,∴BM+N最值為【考】全三角的定與質(zhì),形的定性質(zhì)作圖基本圖軸對(duì)的應(yīng)-最短離題相三形的定性質(zhì)【解分析(1根角平的法可出(2在D取點(diǎn)F使DFDC接EF角分定得DE=∠DE根全三形定SAS得FE≌△E再全等三角性和角義∠DFE∠DE=AFE90,∠DEF∠DC再直角形等定L得R△AF≌R△AB,全三角性得∠AEB∠AF再補(bǔ)義得A⊥DE.②點(diǎn)D作D⊥AB于點(diǎn);由可,,F(xiàn)關(guān)于E對(duì),據(jù)稱(chēng)質(zhì)知M=FM,當(dāng)FN三共且F⊥AB時(shí)最值即B+MN=F+MNFN在R△AD中根勾股定得DP==;由相三角形定得AFN△AP,再由似三形性質(zhì)得,從求得FN即BMMN最值.16.(廣東圳·8分)已菱的一角三角形一角重,后它的角頂點(diǎn)在這個(gè)重合角的對(duì)邊上,這個(gè)菱形稱(chēng)為這個(gè)三角形的親密菱形,如圖,在△CE中,CF=6,E=1,∠CE=5°以點(diǎn)C圓,任為半作AD再別點(diǎn)A點(diǎn)D為圓心大于AD長(zhǎng)半做交點(diǎn)B,B∥D.(1求:邊形ACDB為△CE親菱;(2求邊形ACDB的積.【答(明知得AC=D,A=DB由知尺作痕得BC∠FCE的平分線,∴∠AB=DC,又∵A∥C,∴∠AC=DC,∴∠AB=AB,∴AC=B,又∵A=CDAB=B,∴AC=D=D=B,四形ACB菱又∵A=CDAB=B,∴AC=D=D=B,四形ACB菱,又∵ACD與FCE中FCE合它對(duì)∠AD頂在EF上,∴四形CDB為△EC親密形.(2解設(shè)形ADB邊為x∵C=6,E=1,∴FA=-x,又∵A∥C,∴△FB△FC,∴,即解得x=,,過(guò)點(diǎn)A作H⊥D點(diǎn)H,在R△ACH中∠AH=4°,∴si∠AC=,∴AH=×=2,∴四形CDB的積:.【考】形判與質(zhì),似角的定性質(zhì)【解分析(1依可得AC=D,ABDB,C∠FCE的平線根平分的義和平線性得ACB∠AB據(jù)角等得AC=A而得AC=D=D=A據(jù)邊相等四形菱即得四形CDB是形根據(jù)中新義可證.(2設(shè)形ACB邊為x根已可得F=6CE=12FA=-x根相三角的定和性可得解x=過(guò)點(diǎn)A作H⊥D點(diǎn)H在R△ACH中根銳三角形函正的義可得AH,由邊的公式可答.17.(東6如圖BD是形ABD對(duì)角,CBD75,(1請(qǐng)尺作法作AB垂平線E為E交AD于(要寫(xiě)作保留作痕)(2在()件,接B,∠DBF的數(shù).【分()以【分()以AB為圓,于AB為畫(huà)弧過(guò)弧交作線即;(2根∠DB=∠BD∠ABF計(jì)即;【解】()圖示,線F為求;(2∵邊形ABCD是形,∴∠AD=DBC=∠AC=7°,D∥A,A=C.∴∠AC=10,∠BCC=18°,∴∠C∠A30,∵EF垂平線段A,∴AF=B,∴∠A∠FA=3°,∴∠DF=AB﹣∠BE=°.【點(diǎn)題查圖基本圖線的直分線性形性等知題的關(guān)鍵靈運(yùn)所知解決題屬常題.18(7如形BCDAAD把形對(duì)線C在直折,使點(diǎn)B落點(diǎn)E處AE交CD點(diǎn)F接D.(1求:△DE△C;(2求:△EF是三角.【分(據(jù)【分(據(jù)形性質(zhì)出ADBCB=C結(jié)折的質(zhì)得出D=CEAE=D,進(jìn)而可出AD≌△D(SS(2據(jù)等角的質(zhì)可出DEF∠EF用等對(duì)角出EFF由即可證出DEF是腰角.【解】明(1∵邊形BCD是形,∴AD=C,B=C.由折的質(zhì)得BC=,AB=E,∴AD=E,E=C.在△AE△CD,∴△AE△CE(SS(2由()△AECED,∴∠DA=ED,∠DE∠ED,∴EF=F,∴△DF等三形.【點(diǎn)】本考查全三角的判與性、折變以及形的質(zhì)解題關(guān)鍵:(據(jù)形性結(jié)折疊性出ADCE=CD(利全三形的質(zhì)出∠DEF∠EF.19.208四省市)圖已四形ACD平四形點(diǎn)F別是AB,BC的,AECF并∠AED∠CD.求證()△ED△C;(2四形ACD菱.【考】L:形判;KD全【考】L:形判;KD全三形判與性;L:行邊的性.【分】1由等形的定理SA得論;(2由鄰相的四邊為形證結(jié).【解】1證:邊形BCD是行邊,∴∠A∠.在△AD△CD∴△AD△CF(AA(2由(),AE△CF,則AD=D.又∵形ABD平邊形,∴四形BCD是形.【點(diǎn)考了菱的定全三形的定性質(zhì)及行邊的質(zhì)解的鍵是掌相的質(zhì)定.20(株市如在R△ABM和t△DN斜邊別正形邊B和A,中AM=AN.(1)證:t△BMRtND(2)段N線段AD交于,若AT=,求的值【答()明解(2).【解】析(1用【答()明解(2).【解】析(1用HL明可;(2證△DN∽AM可得,由T=A,出,在R△ABM中,tan∠BM=.詳解(1∵A=A,AMN,∠MB∠AN=9°∴RtAB≌R△AN(H(2由R△AM≌t

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論