湖南長沙一中2026屆高一數(shù)學第一學期期末綜合測試試題含解析_第1頁
湖南長沙一中2026屆高一數(shù)學第一學期期末綜合測試試題含解析_第2頁
湖南長沙一中2026屆高一數(shù)學第一學期期末綜合測試試題含解析_第3頁
湖南長沙一中2026屆高一數(shù)學第一學期期末綜合測試試題含解析_第4頁
湖南長沙一中2026屆高一數(shù)學第一學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南長沙一中2026屆高一數(shù)學第一學期期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線經(jīng)過兩點,且傾斜角為45°,則m的值為A. B.1C.2 D.2.過圓C:(x﹣2)2+(y﹣2)2=4的圓心,作直線分別交x,y正半軸于點A,B,△AOB被圓分成四部分(如圖),若這四部分圖形面積滿足SI+SⅣ=SⅡ+SⅢ,則這樣的直線AB有A.0條 B.1條C.2條 D.3條3.下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調(diào)遞減的是()A. B.C. D.4.函數(shù)(且)與函數(shù)在同一坐標系內(nèi)的圖象可能是()A. B.C. D.5.已知是定義在上的偶函數(shù),那么的最大值是()A.0 B.C. D.16.如圖,在平面四邊形中,,,,將其沿對角線折成四面體,使平面平面,若四面體頂點在同一球面上,則該球的表面積為()A. B.C. D.7.如果角的終邊經(jīng)過點,則()A. B.C. D.8.已知,則的大小關系是()A. B.C. D.9.設非零向量、、滿足,,則向量、的夾角()A. B.C. D.10.將函數(shù),且,下列說法錯誤的是()A.為偶函數(shù) B.C.若在上單調(diào)遞減,則的最大值為9 D.當時,在上有3個零點二、填空題:本大題共6小題,每小題5分,共30分。11.在直角坐標系內(nèi),已知是圓上一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為和,若圓上存在點,使,其中的坐標分別為,則實數(shù)的取值集合為__________12.寫出一個在區(qū)間上單調(diào)遞增冪函數(shù):______13.已知,則____________.(可用對數(shù)符號作答)14.已知函數(shù)則不等式的解集是_____________15.計算值為______16.設平面向量,,則__________.若與的夾角為鈍角,則的取值范圍是__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知角的終邊經(jīng)過點.(1)求的值;(2)求的值.18.若函數(shù)是定義在實數(shù)集上的奇函數(shù),并且在區(qū)間上是單調(diào)遞增的函數(shù).(1)研究并證明函數(shù)在區(qū)間上的單調(diào)性;(2)若實數(shù)滿足不等式,求實數(shù)的取值范圍.19.已知為定義在上的奇函數(shù),當時,函數(shù)解析式為.(1)求的值,并求出在上的解析式;(2)求在上的最值20.(1)已知函數(shù)(其中,,)的圖象與x軸的交于A,B兩點,A,B兩點的最小距離為,且該函數(shù)的圖象上的一個最高點的坐標為.求函數(shù)的解析式(2)已知角的終邊在直線上,求下列函數(shù)的值:21.已知實數(shù),且滿足不等式.(1)解不等式;(2)若函數(shù)在區(qū)間上有最小值,求實數(shù)的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由兩點坐標求出直線的斜率,再由斜率等于傾斜角的正切值列出方程求得的值.【詳解】因為經(jīng)過兩點,的直線的傾斜角為45°,∴,解得,故選A【點睛】本題主要考查了直線的斜率與傾斜角的關系,屬于基礎題.2、B【解析】數(shù)形結(jié)合分析出為定值,因此為定值,從而確定直線AB只有一條.【詳解】已知圓與軸,軸均相切,由已知條件得,第部分的面積是定值,所以為定值,即為定值,當直線繞著圓心C移動時,只有一個位置符合題意,即直線AB只有一條.故選:B【點睛】本題考查直線與圓的實際應用,屬于中檔題.3、D【解析】依次判斷4個選項的單調(diào)性及奇偶性即可.【詳解】對于A,在區(qū)間上單調(diào)遞增,錯誤;對于B,,由得,單調(diào)遞增,錯誤;對于C,當時,沒有意義,錯誤;對于D,為偶函數(shù),且在時,單調(diào)遞減,正確.故選:D.4、C【解析】分,兩種情況進行討論,結(jié)合指數(shù)函數(shù)的單調(diào)性和拋物線的開口方向和對稱軸選出正確答案.【詳解】解:當時,增函數(shù),開口向上,對稱軸,排除B,D;當時,為減函數(shù),開口向下,對稱軸,排除A,故選:C.【點睛】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.5、C【解析】∵f(x)=ax2+bx是定義在[a-1,2a]上偶函數(shù),∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故選C.6、B【解析】由題意,的中點就是球心,求出球的半徑,即可得到球的表面積【詳解】解:由題意,四面體頂點在同一個球面上,和都是直角三角形,所以的中點就是球心,所以,球的半徑為:,所以球的表面積為:故選B【點睛】本題是基礎題,考查四面體的外接球的表面積的求法,找出外接球的球心,是解題的關鍵,考查計算能力,空間想象能力7、D【解析】由三角函數(shù)的定義可求得的值.【詳解】由三角函數(shù)的定義可得.故選:D.【點睛】本題考查利用三角函數(shù)的定義求值,考查計算能力,屬于基礎題.8、B【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),三角函數(shù)的性質(zhì)比較大小即可【詳解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴綜上可知故選:B9、B【解析】根據(jù)已知條件,應用向量數(shù)量積的運算律可得,由得,即可求出向量、的夾角.【詳解】由題意,,即,∵,∴,則,又,∴.故選:B10、C【解析】先求得,然后結(jié)合函數(shù)的奇偶性、單調(diào)性、零點對選項進行分析,從而確定正確選項.【詳解】,,所以,為偶函數(shù),A選項正確.,B選項正確.,若在上單調(diào)遞減,則,,由于,所以,所以的最大值為,的最大值為,C選項錯誤.當時,,,當時,,所以D選項正確.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意,∴A(3,2)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,∴圓上不相同的兩點為B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中點為圓心C(3,4),半徑為1,∴⊙C的方程為(x﹣3)2+(y﹣4)2=4過P,M,N的圓的方程為x2+y2=m2,∴兩圓外切時,m的最大值為,兩圓內(nèi)切時,m的最小值為,故答案為[3,7]12、x(答案不唯一)【解析】由冪函數(shù)的性質(zhì)求解即可【詳解】因為冪函數(shù)在區(qū)間上單調(diào)遞增,所以冪函數(shù)可以是,故答案為:(答案不唯一)13、【解析】根據(jù)對數(shù)運算法則得到,再根據(jù)對數(shù)運算法則及三角函數(shù)弦化切進行計算.【詳解】∵,∴,又,.故答案為:14、【解析】分和0的大小關系分別代入對應的解析式即可求解結(jié)論.【詳解】∵函數(shù),∴當,即時,,故;當,即時,,故;∴不等式的解集是:.故答案為:.15、1;【解析】16、①.②.【解析】(1)由題意得(2)∵與的夾角為鈍角,∴,解得又當時,向量,共線反向,滿足,但此時向量的夾角不是鈍角,故不合題意綜上的取值范圍是答案:;三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】因為角終邊經(jīng)過點,設,,則,所以,,.(1)即得解;(2)化簡即可得解.試題解析:因為角終邊經(jīng)過點,設,,則,所以,,.(1)(2)18、(1)見解析;(2).【解析】(1)設,則,所以,根據(jù)在區(qū)間上是單調(diào)遞增,可得,從而可得函數(shù)在區(qū)間上是單調(diào)遞減函數(shù);(2)先證明在區(qū)間上是單調(diào)遞增的函數(shù),根據(jù)奇偶性可得在區(qū)間上是單調(diào)遞增的函數(shù),再將變形為,可得,進而可得實數(shù)的取值范圍.試題解析:(1)設,顯然恒成立.設,則,,,則,所以,又在區(qū)間上是單調(diào)遞增,所以,即,所以函數(shù)在區(qū)間上是單調(diào)遞減函數(shù).(2)因為是定義在實數(shù)集上的奇函數(shù),所以,又因為在區(qū)間上是單調(diào)遞增的函數(shù),所以當時,,當時,,,所以當,有.設,則,所以,即,所以,所以在區(qū)間上是單調(diào)遞增函數(shù).綜上所述,在區(qū)間上是單調(diào)遞增的函數(shù).所以由得,即所以.【方法點睛】本題主要考查函數(shù)的奇偶性的應用以及抽象函數(shù)與復合函數(shù)的單調(diào)性,屬于難題.利用定義法判斷函數(shù)的單調(diào)性的一般步驟是:(1)在已知區(qū)間上任??;(2)作差;(3)判斷的符號(往往先分解因式,再判斷各因式的符號),可得在已知區(qū)間上是增函數(shù),可得在已知區(qū)間上是減函數(shù).19、(1)在上的解析式為;(2)函數(shù)在[0,1]上的最大與最小值分別為0,-2.【解析】(1)根據(jù)函數(shù)的奇偶性可知,代入即可求值;(2)利用換元得出新的函數(shù),再結(jié)合新的函數(shù)解析式求最值即可.【詳解】(1)為定義在[-1,1]上的奇函數(shù),且在處有意義,即,設,則又,所以,在上的解析式為(2)當,,∴設則當t=1時,取最大值,最大值為1-1=0.當t=0時,取最小值為-2.所以,函數(shù)在[0,1]上的最大與最小值分別為0,-2.20、(1);(2)當為第一象限角時:;當為第三象限角時:.【解析】(1)由題意得,,進而求得,根據(jù)最高點結(jié)合可得,進而可求得的解析式;(2)由題意得為第一或第三象限角,分兩種情況由同角三角函數(shù)關系可解得結(jié)果.【詳解】(1)由題意得,,則,解得.根據(jù)最高點得,所以,即,因,所以,取得.所以.(2)由題意得,則為第一或第三象限角.當為第一象限角時:由得,代入得,又,所以,則.所以;當為第三象

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論