浙江省嘉興市2026屆高二上數(shù)學(xué)期末考試試題含解析_第1頁(yè)
浙江省嘉興市2026屆高二上數(shù)學(xué)期末考試試題含解析_第2頁(yè)
浙江省嘉興市2026屆高二上數(shù)學(xué)期末考試試題含解析_第3頁(yè)
浙江省嘉興市2026屆高二上數(shù)學(xué)期末考試試題含解析_第4頁(yè)
浙江省嘉興市2026屆高二上數(shù)學(xué)期末考試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省嘉興市2026屆高二上數(shù)學(xué)期末考試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若實(shí)數(shù)x,y滿足不等式組,則的最小值為()A. B.0C. D.22.曲線在點(diǎn)處的切線方程為()A. B.C. D.3.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希臘西西里島敘拉古(今意大利西西里島上),偉大的古希臘數(shù)學(xué)家、物理學(xué)家,與高斯、牛頓并稱(chēng)為世界三大數(shù)學(xué)家.有一類(lèi)三角形叫做阿基米德三角形(過(guò)拋物線的弦與過(guò)弦端點(diǎn)的兩切線所圍成的三角形),他利用“通近法”得到拋物線的弦與拋物線所圍成的封閉圖形的面積等于阿基米德三角形面積的(即右圖中陰影部分面積等于面積的).若拋物線方程為,且直線與拋物線圍成封閉圖形的面積為6,則()A.1 B.2C. D.34.已知,是球的球面上兩點(diǎn),,為該球面上的動(dòng)點(diǎn),若三棱錐體積的最大值為36,則球的表面積為()A. B.C. D.5.已知,則()A. B.C. D.6.某企業(yè)甲車(chē)間有200人,乙車(chē)間有300人,現(xiàn)用分層抽樣的方法在這兩個(gè)車(chē)間中抽取25人進(jìn)行技能考核,則從甲車(chē)間抽取的人數(shù)應(yīng)為()A.5 B.10C.8 D.97.已知直線l與拋物線交于不同的兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),若直線的斜率之積為,則直線l恒過(guò)定點(diǎn)()A. B.C. D.8.在等差數(shù)列中,,,則()A. B.C. D.9.已知角為第二象限角,,則的值為()A. B.C. D.10.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥011.的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若,則一定是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形12.拋物線的焦點(diǎn)坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足:,,則______14.在空間直角坐標(biāo)系中,已知向量,則的值為_(kāi)_________.15.已知矩形的長(zhǎng)為2,寬為1,以該矩形的邊所在直線為軸旋轉(zhuǎn)一周得到的幾何體的表面積為_(kāi)__________.16.過(guò)拋物線的焦點(diǎn)作互相垂直的兩條直線,分別交拋物線與A,C,B,D四點(diǎn),則四邊形ABCD面積的最小值為_(kāi)__________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知為坐標(biāo)原點(diǎn),橢圓:的左、右焦點(diǎn)分別為,,右頂點(diǎn)為,上頂點(diǎn)為,若,,成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值為求橢圓的標(biāo)準(zhǔn)方程;過(guò)該橢圓的右焦點(diǎn)作兩條互相垂直的弦與,求的取值范圍18.(12分)如圖,在四棱錐中,底面為直角梯形,底面分別為的中點(diǎn),(1)求證:平面平面;(2)求二面角的大小19.(12分)某市對(duì)排污水進(jìn)行綜合治理,征收污水處理費(fèi),系統(tǒng)對(duì)各廠一個(gè)月內(nèi)排出污水量x噸收取的污水處理費(fèi)y元,運(yùn)行程序如圖所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式;(2)求排放污水150噸的污水處理費(fèi)用.20.(12分)有時(shí)候一些東西吃起來(lái)口味越好,對(duì)我們的身體越有害.下表給出了不同品牌的一些食品所含熱量的百分比記為和一些美食家以百分制給出的對(duì)此種食品口味的評(píng)價(jià)分?jǐn)?shù)記為:食品品牌12345678910所含熱量的百分比25342019262019241914百分制口味評(píng)價(jià)分?jǐn)?shù)88898078757165626052參考數(shù)據(jù):,,,參考公式:,(1)已知這些品牌食品的所含熱量的百分比與美食家以百分制給出的對(duì)此種食品口味的評(píng)價(jià)分?jǐn)?shù)具有相關(guān)關(guān)系.試求出回歸方程(最后結(jié)果精確到);(2)某人只能接受食品所含熱量百分比為及以下的食品.現(xiàn)在他想從這些食品中隨機(jī)選取兩種購(gòu)買(mǎi),求他所選取的兩種食品至少有一種是美食家以百分制給出的對(duì)此種食品口味的評(píng)價(jià)分?jǐn)?shù)為分以上的概率.21.(12分)如圖,在幾何體中,底面是邊長(zhǎng)為2的正三角形,平面,,且是的中點(diǎn).(1)求證:平面;(2)求二面角的余弦值.22.(10分)已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.(1)求圓的方程;(2)過(guò)點(diǎn)的直線與圓交于兩點(diǎn)在軸上方),問(wèn)在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】畫(huà)出可行域,令,則,結(jié)合圖形求出最小值,即可得解;【詳解】解:畫(huà)出不等式組,表示的平面區(qū)域如圖陰影部分所示,由,解得,即,令,則.結(jié)合圖形可知當(dāng)過(guò)點(diǎn)時(shí),取得最小值,且,即故選:A2、A【解析】利用切點(diǎn)和斜率求得切線方程.【詳解】由,有曲線在點(diǎn)處的切線方程為,整理為故選:A3、D【解析】根據(jù)題目所給條件可得阿基米德三角形的面積,再利用三角形面積公式即可求解.【詳解】由題意可知,當(dāng)過(guò)焦點(diǎn)的弦垂直于x軸時(shí),即時(shí),,即,故選:D4、C【解析】當(dāng)平面時(shí),三棱錐體積最大,根據(jù)棱長(zhǎng)與球半徑關(guān)系即可求出球半徑,從而求出表面積.【詳解】當(dāng)平面時(shí),三棱錐體積最大.又,則三棱錐體積,解得;故表面積.故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查三棱錐與球的組合體的綜合問(wèn)題,本題的關(guān)鍵是判斷當(dāng)平面時(shí),三棱錐體積最大.5、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及求導(dǎo)法則求導(dǎo)函數(shù)即可.【詳解】.故選:B.6、B【解析】根據(jù)分層抽樣的定義即可求解.【詳解】從甲車(chē)間抽取的人數(shù)為人故選:B7、A【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到,進(jìn)而得到的值,將直線的斜率之積為,用A,B點(diǎn)坐標(biāo)表示出來(lái),結(jié)合的值即可求得答案.【詳解】設(shè)直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當(dāng)時(shí),,即直線l恒過(guò)定點(diǎn),故選:A.8、B【解析】利用等差中項(xiàng)的性質(zhì)可求得的值,進(jìn)而可求得的值.【詳解】由等差中項(xiàng)的性質(zhì)可得,則.故選:B.9、C【解析】由同角三角函數(shù)關(guān)系可得,進(jìn)而直接利用兩角和的余弦展開(kāi)求解即可.【詳解】∵,是第二象限角,∴,∴.故選:C.10、C【解析】利用全稱(chēng)命題的否定可得出結(jié)論.【詳解】由全稱(chēng)命題的否定可知,命題“,”的否定是“,”.故選:C.11、B【解析】利用余弦定理化角為邊,從而可得出答案.【詳解】解:因?yàn)?,所以,則,所以,所以是等腰三角形.故選:B.12、C【解析】先把拋物線方程化為標(biāo)準(zhǔn)方程,求出即可求解【詳解】由,有,可得,拋物線的焦點(diǎn)坐標(biāo)為故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令n=n-1代回原式,相減可得,利用累乘法,即可得答案.【詳解】因?yàn)?,所以,兩式相減可得,整理得,所以,整理得,又,解得.故答案為:14、【解析】由題知,進(jìn)而根據(jù)向量數(shù)量積運(yùn)算的坐標(biāo)表示求解即可.【詳解】解:因?yàn)橄蛄?,所以,所以故答案為?5、或##或【解析】分兩種情況進(jìn)行解答,①以邊長(zhǎng)為2的邊為軸旋轉(zhuǎn),②以邊長(zhǎng)為1的邊為軸旋轉(zhuǎn).進(jìn)行解答即可【詳解】解:①以邊長(zhǎng)為2的邊為軸旋轉(zhuǎn),表面積兩個(gè)底面積側(cè)面積,即:,②以邊長(zhǎng)為1的邊為軸旋轉(zhuǎn),表面積兩個(gè)底面積側(cè)面積,即:,故答案為:或16、512【解析】設(shè)出直線的方程與拋物線方程聯(lián)立,結(jié)合拋物線的定義、一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【詳解】拋物線焦點(diǎn)的坐標(biāo)為,由題意可知:直線存在斜率且不為零,所以設(shè)直線的斜率為,所以直線的方程為,與拋物線的方程聯(lián)立得:,設(shè),所以,由拋物線的定義可知:,因?yàn)橹本€互相垂直,所以直線的斜率為,同理可得:,所以四邊形ABCD面積為:,當(dāng)且僅當(dāng)時(shí)取等號(hào),即當(dāng)時(shí)取等號(hào),故答案為:512三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】根據(jù),,成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的距離的最大值為.列出關(guān)于、、的方程組,求出、的值,即可得出橢圓的方程;對(duì)直線和分兩種情況討論:一種是兩條直線與坐標(biāo)軸垂直,可求出兩條弦長(zhǎng)度之和;二是當(dāng)兩條直線斜率都存在時(shí),設(shè)直線的方程為,將直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,利用弦長(zhǎng)公式可計(jì)算出的長(zhǎng)度的表達(dá)式,然后利用相應(yīng)的代換可求出的長(zhǎng)度表達(dá)式,將兩線段長(zhǎng)度表達(dá)式相加,利用函數(shù)思想可求出兩條弦長(zhǎng)的取值范圍最后將兩種情況的取值范圍進(jìn)行合并即可得出答案【詳解】易知,得,則,而,又,得,,因此,橢圓C的標(biāo)準(zhǔn)方程為;當(dāng)兩條直線中有一條斜率為0時(shí),另一條直線的斜率不存在,由題意易得;當(dāng)兩條直線斜率都存在且不為0時(shí),由知,設(shè)、,直線MN的方程為,則直線PQ的方程為,將直線方程代入橢圓方程并整理得:,顯然,,,,同理得,所以,,令,則,,設(shè),,所以,,所以,,則綜合可知,的取值范圍是【點(diǎn)睛】本題主要考查待定系數(shù)法求橢圓方程及圓錐曲線求范圍,屬于難題.解決圓錐曲線中的范圍問(wèn)題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來(lái)解決,非常巧妙;二是將圓錐曲線中范圍問(wèn)題轉(zhuǎn)化為函數(shù)問(wèn)題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法求解.18、(1)證明見(jiàn)解析(2)【解析】(1)依題意可得平行四邊形是矩形,即可得到,再由及面面垂直的性質(zhì)定理得到平面,從而得到,即可得到平面,從而得證;(2)建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值,即可得解;【小問(wèn)1詳解】證明:因?yàn)闉榈闹悬c(diǎn),,所以,又,所以四邊形為平行四邊形,因?yàn)椋云叫兴倪呅问蔷匦?,所以,因?yàn)?,所以,又因?yàn)槠矫嫫矫?,平面平面面,所以平面,因?yàn)槊?,所以,又因?yàn)?,平面,所以平面,因?yàn)槠矫妫云矫嫫矫?;【小?wèn)2詳解】解:由(1)可得:兩兩垂直,如圖,分別以所在的直線為軸建立空間直角坐標(biāo)系,則則,設(shè)平面的一個(gè)法向量,由則,令,則,所以,設(shè)平面的一個(gè)法向量,所以,根據(jù)圖像可知二面角為銳二面角,所以二面角的大小為;19、(1);(2)1400(元).【解析】(1)根據(jù)已知條件即可容易求得函數(shù)關(guān)系式;(2)根據(jù)(1)中所求函數(shù)關(guān)系式,令,求得函數(shù)值即可.【小問(wèn)1詳解】根據(jù)題意,得:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.即.【小問(wèn)2詳解】因?yàn)?,故,故該廠應(yīng)繳納污水處理費(fèi)1400元.20、(1)(2)【解析】(1)首先求出、、,即可求出,從而求出回歸直線方程;(2)由表可知某人只能接受的食品共有種,評(píng)價(jià)為分以上的有種可記為,,另外種記為,,,,用列舉法列出所有的可能結(jié)果,再根據(jù)古典概型的概率公式計(jì)算可得;【小問(wèn)1詳解】解:設(shè)所求的回歸方程為,由,,,,所求的回歸方程為:.【小問(wèn)2詳解】解:由表可知某人只能接受的食品共有種,其中美食家以百分制給出的對(duì)此種食品口味的評(píng)價(jià)為分以上的有種可記為,,另外種記為,,,.任選兩種分別為:,,,,,,,,,,,,,,,共15個(gè)基本事件.記“所選取的兩種食品至少有一種是美食家以百分制給出的對(duì)此食品口味的評(píng)價(jià)分?jǐn)?shù)為分以上”為事件,則事件包含,,,,,,,,共個(gè)基本事件,故事件發(fā)生的概率為.21、(1)證明見(jiàn)解析(2)【解析】(1)取的中點(diǎn)F,連接EF,,由四邊形是平行四邊形即可求解;(2)采用建系法,以為軸,為軸,垂直底面方向?yàn)檩S,求出對(duì)應(yīng)點(diǎn)坐標(biāo),結(jié)合二面角夾角余弦公式即可求解.【小問(wèn)1詳解】取的中點(diǎn)F,連接EF,,∵,∴,且,∴,∴四邊形是平行四邊形,∴,又平面,平面,∴平面;【小問(wèn)2詳解】取AC的中點(diǎn)O,以O(shè)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論