陜西省西安市西光中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁
陜西省西安市西光中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁
陜西省西安市西光中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁
陜西省西安市西光中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁
陜西省西安市西光中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省西安市西光中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是橢圓的左焦點(diǎn),為橢圓上任意一點(diǎn),點(diǎn)坐標(biāo)為,則的最大值為()A. B.13C.3 D.52.已知,是圓上的兩點(diǎn),是直線上一點(diǎn),若存在點(diǎn),,,使得,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.直線在y軸上的截距為()A.-1 B.1C. D.4.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個(gè)交點(diǎn),若,則|QF|=()A. B.C.3 D.25.若,則實(shí)數(shù)的取值范圍是()A. B.C. D.6.已知函數(shù),則下列說法正確的是()A.的最小正周期為 B.的圖象關(guān)于直線C.的一個(gè)零點(diǎn)為 D.在區(qū)間的最小值為17.據(jù)有關(guān)文獻(xiàn)記載:我國(guó)古代一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)比上一層燈數(shù)都多為常數(shù)盞,底層的燈數(shù)是頂層的倍,則塔的底層共有燈()A.盞 B.盞C.盞 D.盞8.已知雙曲線的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn),M,N兩點(diǎn)分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.9.已知數(shù)列滿足:,,則()A. B.C. D.10.德國(guó)數(shù)學(xué)家高斯是近代數(shù)學(xué)奠基者之一,有“數(shù)學(xué)王子”之稱,在歷史上有很大的影響.他幼年時(shí)就表現(xiàn)出超人的數(shù)學(xué)天才,10歲時(shí),他在進(jìn)行的求和運(yùn)算時(shí),就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對(duì)應(yīng)項(xiàng)的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列,則()A.96 B.97C.98 D.9911.若函數(shù)在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則實(shí)數(shù)的取值范圍是()A. B.C. D.12.平行直線:與:之間的距離等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與圓相交于兩點(diǎn)M,N,若滿足,則________14.將數(shù)列{n}按“第n組有n個(gè)數(shù)”的規(guī)則分組如下:(1),(2,3),(4,5,6),…,則第22組中的第一個(gè)數(shù)是_________15.已知莖葉圖記錄了甲、乙兩組各名學(xué)生在一次英語聽力測(cè)試中的成績(jī)(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________.甲組乙組16.設(shè)函數(shù),,對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)大學(xué)生王蕾利用暑假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷售公司月份至月份銷售某種機(jī)械配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)和銷售量之間的一組數(shù)據(jù)如表所示:月份銷售單價(jià)(元)銷售量(件)(1)根據(jù)至月份數(shù)據(jù),求出關(guān)于的回歸直線方程;(2)若剩下的月份的數(shù)據(jù)為檢驗(yàn)數(shù)據(jù),并規(guī)定由回歸直線方程得到的估計(jì)數(shù)據(jù)與檢驗(yàn)數(shù)據(jù)的誤差不超過元,則認(rèn)為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?(注:,,參考數(shù)據(jù):,)18.(12分)已知函數(shù)的兩個(gè)極值點(diǎn)之差的絕對(duì)值為.(1)求的值;(2)若過原點(diǎn)的直線與曲線在點(diǎn)處相切,求點(diǎn)的坐標(biāo).19.(12分)已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過的直線與橢圓交于,兩點(diǎn),若的周長(zhǎng)為8.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)為橢圓上的動(dòng)點(diǎn),過原點(diǎn)作直線與橢圓分別交于點(diǎn)、(點(diǎn)不在直線上),求面積的最大值.20.(12分)保護(hù)生態(tài)環(huán)境,提倡環(huán)保出行,節(jié)約資源和保護(hù)環(huán)境,某地區(qū)從2016年開始大力提倡新能源汽車,每年抽樣1000汽車調(diào)查,得到新能源汽車y輛與年份代碼x年的數(shù)據(jù)如下表:年份20162017201820192020年份代碼第x年12345新能源汽車y輛305070100110(1)建立y關(guān)于x的線性回歸方程;(2)假設(shè)該地區(qū)2022年共有30萬輛汽車,用樣本估計(jì)總體來預(yù)測(cè)該地區(qū)2022年有多少新能源汽車參考公式:回歸方程斜率和截距的最小二乘估計(jì)公式分別為,21.(12分)設(shè)數(shù)列的前n項(xiàng)和為,且滿足.(1)證明為等比數(shù)列,并求數(shù)列通項(xiàng)公式;(2)在(1)的條件下,設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知數(shù)列是公比為2的等比數(shù)列,是與的等差中項(xiàng)(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用橢圓的定義求解.【詳解】如圖所示:,故選:B2、B【解析】確定在以為直徑的圓上,,根據(jù)均值不等式得到圓上的點(diǎn)到的最大距離為,得到,解得答案.【詳解】,故在以為直徑的圓上,設(shè)中點(diǎn)為,則,圓上的點(diǎn)到的最大距離為,,當(dāng)時(shí)等號(hào)成立.直線到原點(diǎn)的距離為,故.故選:B.3、A【解析】把直線方程由一般式化成斜截式,即可得到直線在軸上的截距.【詳解】由,可得,則直線在軸上的截距為.故選:A4、C【解析】過點(diǎn)Q作QQ′⊥l交l于點(diǎn)Q′,利用拋物線定義以及相似得到|QF|=|QQ′|=3.【詳解】如圖所示:過點(diǎn)Q作QQ′⊥l交l于點(diǎn)Q′,因?yàn)椋詜PQ|∶|PF|=3∶4,又焦點(diǎn)F到準(zhǔn)線l的距離為4,所以|QF|=|QQ′|=3.故選C.【點(diǎn)睛】本題考查了拋物線的定義應(yīng)用,意在考查學(xué)生的計(jì)算能力.5、B【解析】由題意可知且,構(gòu)造函數(shù),可得出,由函數(shù)的單調(diào)性可得出,利用導(dǎo)數(shù)求出函數(shù)的最小值,可得出關(guān)于的不等式,由此可解得實(shí)數(shù)的取值范圍.【詳解】因?yàn)椋瑒t且,由已知可得,構(gòu)造函數(shù),其中,,所以,函數(shù)為上的增函數(shù),由已知,所以,,可得,構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,則,所以,,解得.故選:B.6、D【解析】根據(jù)余弦函數(shù)的圖象與性質(zhì)判斷其周期、對(duì)稱軸、零點(diǎn)、最值即可.【詳解】函數(shù),周期為,故A錯(cuò)誤;函數(shù)圖像的對(duì)稱軸為,,,不是對(duì)稱軸,故B錯(cuò)誤;函數(shù)的零點(diǎn)為,,,所以不是零點(diǎn),故C錯(cuò)誤;時(shí),,所以,即,所以,故D正確.故選:D7、C【解析】根據(jù)給定條件利用等差數(shù)列前n項(xiàng)和公式列式計(jì)算即可作答.【詳解】依題意,層塔從上層到下層掛燈盞數(shù)依次排成一列可得等差數(shù)列,,于是得,解得,,所以塔的底層共有燈盞.故選:C8、C【解析】由題意可得且,從而求出點(diǎn)的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點(diǎn),設(shè)點(diǎn)在第二象限,在第一象限.由雙曲線的對(duì)稱性,可得,過點(diǎn)作軸交軸于點(diǎn),則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C9、A【解析】由a1=3,,利用遞推思想,求出數(shù)列的前11項(xiàng),推導(dǎo)出數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,由此能求出a2022【詳解】解:∵數(shù)列{an}滿足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,∵2022=5+672×3+1,∴a2022=a6=4故選:A10、C【解析】令,利用倒序相加原理計(jì)算即可得出結(jié)果.【詳解】令,,兩式相加得:,∴,故選:C11、D【解析】求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為在有解,進(jìn)而求函數(shù)的最值,即可求出的范圍.【詳解】∵,∴,若在區(qū)間內(nèi)存在單調(diào)遞增區(qū)間,則有解,故,令,則在單調(diào)遞增,,故.故選:D.12、B【解析】先由兩條直線平行解出,再按照平行線之間距離公式求解.【詳解】,則:,即,距離為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由點(diǎn)到直線的距離公式,結(jié)合已知可得圓心到直線的距離,再由圓的弦長(zhǎng)公式可得,然后可解.【詳解】因?yàn)?,所以,所以,圓心到直線的距離因?yàn)?,所以,所以故答案為?4、【解析】由已知,第組中最后一個(gè)數(shù)即為前組數(shù)的個(gè)數(shù)和,由此可求得第21組的最后一個(gè)數(shù),從而就可得第22組的第一個(gè)數(shù).【詳解】由條件可知,第21組的最后一個(gè)數(shù)為,所以第22組的第1個(gè)數(shù)為.故答案為:15、【解析】根據(jù)中位數(shù)、平均數(shù)的定義,結(jié)合莖葉圖進(jìn)行計(jì)算求解即可.【詳解】根據(jù)莖葉圖可知:甲組名學(xué)生在一次英語聽力測(cè)試中的成績(jī)分別;乙組名學(xué)生在一次英語聽力測(cè)試中的成績(jī)分別,因?yàn)榧捉M數(shù)據(jù)的中位數(shù)為,所以有,又因?yàn)橐医M數(shù)據(jù)的平均數(shù)為,所以有,所以,故答案為:16、【解析】首先求得函數(shù)在區(qū)間上的最大值,然后分離參數(shù),利用導(dǎo)函數(shù)求最值即可確定實(shí)數(shù)的取值范圍.【詳解】∵在上恒成立,∴當(dāng)時(shí),取最大值1,∵對(duì)任意的,都有成立,∴在上恒成立,即在上恒成立,令,則,,∵在上恒成立,∴在上為減函數(shù),∵當(dāng)時(shí),,故當(dāng)時(shí),取最大值1,故,故答案為【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是函數(shù)恒成立問題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的最值,難度中檔三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)回歸直線方程是理想的【解析】(1)根據(jù)表格數(shù)據(jù)求得,利用最小二乘法可求得回歸直線方程;(2)令回歸直線中的可求得估計(jì)數(shù)據(jù),對(duì)比檢驗(yàn)數(shù)據(jù)即可確定結(jié)論.小問1詳解】由表格數(shù)據(jù)可知:,,,則,關(guān)于的回歸直線方程為;【小問2詳解】令回歸直線中的,則,,(1)中所得到的回歸直線方程是理想的.18、(1);(2).【解析】(1)求,設(shè)的兩根分別為,,由韋達(dá)定理可得:,,由題意知,進(jìn)而可得的值;再檢驗(yàn)所求的的值是否符合題意即可;(2)設(shè),則,由列關(guān)于的方程,即可求得的值,進(jìn)而可得的值,即可得點(diǎn)的坐標(biāo).【詳解】由可得:設(shè)的兩根分別為,,則,,由題意可知:,即,所以解得:,當(dāng)時(shí),,由可得或,由可得,所以在單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,所以為極大值點(diǎn),為極小值點(diǎn),滿足兩個(gè)極值點(diǎn)之差的絕對(duì)值為,符合題意,所以.(2)由(1)知,,設(shè),則,由題意可得:,即,整理可得:,解得:或,因?yàn)榧礊樽鴺?biāo)原點(diǎn),不符合題意,所以,則,所以.19、(1);(2).【解析】(1)根據(jù)周長(zhǎng)可求,再根據(jù)離心率可求,求出后可求橢圓的方程.(2)當(dāng)直線軸時(shí),計(jì)算可得的面積的最大值為,直線不垂直軸時(shí),可設(shè),聯(lián)立直線方程和橢圓方程可求,設(shè)與平行且與橢圓相切的直線為:,結(jié)合橢圓方程可求的關(guān)系,從而求出該直線到直線的距離,從而可求的面積的最大值為.【詳解】(1)由橢圓的定義可知,的周長(zhǎng)為,∴,,又離心率為,∴,,所以橢圓方程為.(2)當(dāng)直線軸時(shí),;當(dāng)直線不垂直軸時(shí),設(shè),,,∴.設(shè)與平行且與橢圓相切的直線為:,,∵,∴,∴距的最大距離為,∴,綜上,面積的最大值為.【點(diǎn)睛】方法點(diǎn)睛:求橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是基本量的確定,而面積的最值的計(jì)算,則可以轉(zhuǎn)化為與已知直線平行且與橢圓相切的直線與已知直線的距離來計(jì)算,此類轉(zhuǎn)化為面積最值計(jì)算過程的常規(guī)轉(zhuǎn)化.20、(1)(2)46800【解析】(1)第一步分別算第x,y的平均值,第二步利用,即可得到方程.(2)由第一問的結(jié)果,帶入方程即可算出預(yù)估的結(jié)果.【小問1詳解】,,,因?yàn)?,所以,所以【小?詳解】預(yù)測(cè)該地區(qū)2022年抽樣1000汽車調(diào)查中新能源汽車數(shù),當(dāng)時(shí),,該地區(qū)2022年共有30萬輛汽車,所以新能源汽車.21、(1)證明見解析,;(2).【解析】(1)利用與的關(guān)系求數(shù)列的遞推關(guān)系,即得證明結(jié)論,并根據(jù)等比數(shù)列求通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果求出,再分和,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論