云南省保山市2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第1頁
云南省保山市2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第2頁
云南省保山市2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第3頁
云南省保山市2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第4頁
云南省保山市2026屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

云南省保山市2026屆數(shù)學(xué)高二上期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列的各項均為正數(shù),且,則()A. B.C. D.2.在數(shù)列中,,則的值為()A. B.C. D.以上都不對3.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構(gòu)成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A B.C. D.4.等比數(shù)列中,,,則()A. B.C. D.5.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是A. B.C. D.6.直線被圓所截得的弦長為()A. B.C. D.7.已知數(shù)列滿足,,數(shù)列的前n項和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.228.若是函數(shù)的極值點,則函數(shù)()A.有最小值,無最大值 B.有最大值,無最小值C.有最小值,最大值 D.無最大值,無最小值9.已知圓與直線,則圓上到直線的距離為1的點的個數(shù)是()A.1 B.2C.3 D.410.在四面體中,設(shè),若F為BC的中點,P為EF的中點,則=()A. B.C. D.11.函數(shù)的導(dǎo)函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.12.圓與直線的位置關(guān)系為()A.相切 B.相離C.相交 D.無法確定二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的漸近線方程為___________.14.函數(shù)僅有一個零點,則實數(shù)的取值范圍是_________.15.函數(shù)的導(dǎo)函數(shù)___________.16.如圖的形狀出現(xiàn)在南宋數(shù)學(xué)家楊輝所著的《算法九章·商功》中,后人稱之為“三角垛”.已知某“三角垛”的最上層有1個球,第二層有3個球,第三層有6個球……設(shè)各層(從上往下)球數(shù)構(gòu)成一個數(shù)列,則___________,___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)排一張有6個歌唱節(jié)目和5個舞蹈節(jié)目的演出節(jié)目單.(1)任何兩個舞蹈節(jié)目不相鄰的排法有多少種?(2)歌唱節(jié)目與舞蹈節(jié)目間隔排列的方法有多少種?18.(12分)在平面直角坐標(biāo)系xOy中,曲線1與坐標(biāo)軸的交點都在圓C上(1)求圓C的方程;(2)設(shè)過點P(0,-2)的直線l與圓C交于A,B兩點,且AB=2,求l的方程19.(12分)已知數(shù)列滿足,(1)設(shè),求證數(shù)列為等差數(shù)列,并求數(shù)列的通項公式;(2)設(shè),數(shù)列的前n項和為,是否存在正整數(shù)m,使得對任意的都成立?若存在,求出m的最小值;若不存在,試說明理由20.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.21.(12分)已知命題實數(shù)滿足成立,命題方程表示焦點在軸上的橢圓,若命題為真,命題或為真,求實數(shù)的取值范圍22.(10分)若等比數(shù)列的各項為正,前項和為,且,.(1)求數(shù)列的通項公式;(2)若是以1為首項,1為公差的等差數(shù)列,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用對數(shù)的運算性質(zhì),結(jié)合等比數(shù)列的性質(zhì)可求得結(jié)果.【詳解】是各項均為正數(shù)的等比數(shù)列,,,,.故選:B2、C【解析】由數(shù)列的遞推公式可先求數(shù)列的前幾項,從而發(fā)現(xiàn)數(shù)列的周期性的特點,進而可求.【詳解】解:,數(shù)列是以3為周期的數(shù)列故選:【點睛】本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的項,解題的關(guān)鍵是由遞推關(guān)系發(fā)現(xiàn)數(shù)列的周期性的特點,屬于基礎(chǔ)題.3、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點的直線.由直線與圓、圓均相切,得解得(1).設(shè)點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得4、D【解析】設(shè)公比為,依題意得到方程,即可求出,再根據(jù)等比數(shù)列通項公式計算可得;【詳解】解:設(shè)公比為,因為,,所以,即,解得,所以;故選:D5、D【解析】,∵函數(shù)在區(qū)間單調(diào)遞增,∴在區(qū)間上恒成立.∴,而在區(qū)間上單調(diào)遞減,∴.∴取值范圍是.故選D考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.6、A【解析】求得圓心坐標(biāo)和半徑,結(jié)合點到直線的距離公式和圓的弦長公式,即可求解.【詳解】由圓的方程可知圓心為,半徑為,圓心到直線的距離,所以弦長為.故選:A.7、D【解析】利用累加法求得列的通項公式,再利用裂項相消法求得數(shù)列的前n項和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因為,且,所以當(dāng)時,,因為也滿足,所以.因為,所以.若,,成等差數(shù)列,則,即,得.故選:D.8、A【解析】對求導(dǎo),根據(jù)極值點求參數(shù)a,再由導(dǎo)數(shù)研究其單調(diào)性并判斷其最值情況.【詳解】由題設(shè),且,∴,可得.∴且,當(dāng)時,遞減;當(dāng)時,遞增;∴有極小值,無極大值.綜上,有最小值,無最大值.故選:A9、B【解析】根據(jù)圓心到直線的距離即可判斷.【詳解】由得,則圓的圓心為,半徑,由,則圓心到直線的距離,∵,∴在圓上到直線距離為1的點有兩個.故選:B.10、A【解析】作出圖示,根據(jù)空間向量的加法運算法則,即可得答案.【詳解】如圖示:連接OF,因為P為EF中點,,F(xiàn)為BC的中點,則,故選:A11、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)在上單調(diào)遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.12、C【解析】先計算出直線恒過定點,而點在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點.把代入,有:,所以在圓內(nèi),所以圓與直線的位置關(guān)系為相交.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將雙曲線化為標(biāo)準(zhǔn)方程后求解【詳解】,化簡得,其漸近線方程故答案為:14、【解析】根據(jù)題意求出函數(shù)的導(dǎo)函數(shù)并且通過導(dǎo)數(shù)求出原函數(shù)的單調(diào)區(qū)間,進而得到原函數(shù)的極值,因為函數(shù)僅有一個零點,所以結(jié)合函數(shù)的性質(zhì)可得函數(shù)的極大值小于或極小值大于,即可得到答案.【詳解】解:由題意可得:函數(shù),所以,令,則或,令,則,所以函數(shù)的單調(diào)增區(qū)間為和,減區(qū)間為所以當(dāng)時函數(shù)有極大值,當(dāng)時函數(shù)有極小值,,因為函數(shù)僅有一個零點,,所以或,解得或.所以實數(shù)的取值范圍是故答案為:15、【解析】利用導(dǎo)函數(shù)的乘法公式和復(fù)合函數(shù)求導(dǎo)法則進行求解【詳解】故答案為:16、①.②.【解析】根據(jù),,得到,利用累加法和等差數(shù)列求和公式求出,再利用裂項抵消法進行求和.【詳解】因為,,,,,以上個式子累加,得,則;因為,所以.故答案為:,.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)用插空法,現(xiàn)排唱歌,利用產(chǎn)生的空排跳舞;(2)先排唱歌再排舞蹈.【小問1詳解】解:先排歌唱節(jié)目有種,歌唱節(jié)目之間以及兩端共有7個空位,從中選5個放入舞蹈節(jié)目,共有種方法,所以任何兩個舞蹈節(jié)目不相鄰的排法有種方法.【小問2詳解】解:先排舞蹈節(jié)目有種方法,在舞蹈節(jié)目之間以及兩端共有6個空位,恰好供6個歌唱節(jié)目放入.所以歌唱節(jié)目與舞蹈節(jié)目間隔排列的排法有種方法.18、(1)(2)或【解析】(1)求出曲線與坐標(biāo)軸的交點坐標(biāo),設(shè)出圓的一般方程,代入求解;(2)分類討論,斜率不存在時,直接驗證,斜率存在時,設(shè)直線方程,求出圓心到直線的距離,由勾股定理求解【小問1詳解】時,,又得,,所以三交點為,設(shè)圓方程為,則,解得,圓方程為;【小問2詳解】由(1)知圓標(biāo)準(zhǔn)方程為,圓心為,半徑為,直線斜率不存在時,直線為,它與圓的兩交點為,滿足題意;斜率存在時,設(shè)直線方程為,即,圓心到的距離為,又,所以,,直線方程為即所以直線方程是:或19、(1);(2)存在,3【解析】(1)結(jié)合遞推關(guān)系可證得bn+1-bn1,且b1=1,可證數(shù)列{bn}為等差數(shù)列,據(jù)此可得數(shù)列的通項公式;(2)結(jié)合通項公式裂項有求和有,再結(jié)合條件可得,即求【詳解】(1)證明:∵,又由a1=2,得b1=1,所以數(shù)列{bn}是首項為1,公差為1的等差數(shù)列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依題意,要使對于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整數(shù)m的最小值為320、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據(jù)得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標(biāo)系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量,則,即,取得到,,設(shè)直線與平面所成角為故.【點睛】本題考查了線面垂直,線面夾角,意在考查學(xué)生的空間想象能力和計算能力.21、或【解析】首先根據(jù)復(fù)數(shù)的乘方及復(fù)數(shù)模的計算公式求出命題為真時參數(shù)的取值范圍,再根據(jù)橢圓的性質(zhì)求出命題為真時參數(shù)的取值范圍,依題意為假,為真,即可求出參數(shù)的取值范圍;【詳解】解:因為,,,,所以,所以,所以為真時,因為方程表示焦點在軸上的橢圓,所以,所以,即為真時,所以為假時參數(shù)的取值范圍為或,因為命題為真,命題或為真,所以為假,為真,或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論