2026屆天津市靜海區(qū)第四中學數(shù)學高一上期末預測試題含解析_第1頁
2026屆天津市靜海區(qū)第四中學數(shù)學高一上期末預測試題含解析_第2頁
2026屆天津市靜海區(qū)第四中學數(shù)學高一上期末預測試題含解析_第3頁
2026屆天津市靜海區(qū)第四中學數(shù)學高一上期末預測試題含解析_第4頁
2026屆天津市靜海區(qū)第四中學數(shù)學高一上期末預測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆天津市靜海區(qū)第四中學數(shù)學高一上期末預測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,則“”是“”的()A.充分不必要條件B.必要不充分條件C.充分必要條件D.既不充分也不必要條件2.函數(shù)的圖象如圖所示,則函數(shù)的零點為()A. B.C. D.3.設函數(shù)若任意給定的,都存在唯一的非零實數(shù)滿足,則正實數(shù)的取值范圍為()A. B.C. D.4.設θ為銳角,,則cosθ=()A. B.C. D.5.對于實數(shù)a,b,c下列命題中的真命題是()A.若a>b,則ac2>bc2 B.若a>b>0,則C.若a<b<0,則 D.若a>b,,則a>0,b<06.若是圓的弦,的中點是(-1,2),則直線的方程是()A. B.C. D.7.“x=”是“sinx=”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.某同學用“五點法”畫函數(shù)在一個周期內的簡圖時,列表如下:0xy0200則的解析式為()A. B.C D.9.直線l1:x+ay+1=0與l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,則直線l2的斜率為()A. B.C.1 D.﹣110.小敏打開計算機時,忘記了開機密碼的前兩位,只記得第一位是中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,則小敏輸入一次密碼能夠成功開機的概率是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若()與()互為相反數(shù),則的最小值為______.12.一個幾何體的三視圖如圖所示,則該幾何體的體積為__________.13.一條從西向東的小河的河寬為3.5海里,水的流速為3海里/小時,如果輪船希望用10分鐘的時間從河的南岸垂直到達北岸,輪船的速度應為______;14.若在上是減函數(shù),則a的最大值是___________.15.如圖,矩形的三個頂點分別在函數(shù),,的圖像上,且矩形的邊分別平行于兩坐標軸.若點的縱坐標為2,則點的坐標為______.16.經過點P(3,2),且在兩坐標軸上的截距相等的直線方程為(寫出一般式)___三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求函數(shù)的最小正周期和單調遞減區(qū)間;(2)求函數(shù),的值域18.某企業(yè)生產A,B兩種產品,根據(jù)市場調查與預測,A產品的利潤y與投資x成正比,其關系如圖(1)所示;B產品的利潤y與投資x的算術平方根成正比,其關系如圖(2)所示(注:利潤y與投資x的單位均為萬元)(1)分別求A,B兩種產品的利潤y關于投資x的函數(shù)解析式;(2)已知該企業(yè)已籌集到200萬元資金,并將全部投入A,B兩種產品的生產①若將200萬元資金平均投入兩種產品的生產,可獲得總利潤多少萬元?②如果你是廠長,怎樣分配這200萬元資金,可使該企業(yè)獲得總利潤最大?其最大利潤為多少萬元?19.如圖,在平面直角坐標系中,角,的始邊均為軸正半軸,終邊分別與圓交于,兩點,若,,且點的坐標為(1)若,求實數(shù)的值;(2)若,求的值20.已知函數(shù)fx=-x2(1)求不等式cx(2)當gx=fx-mx在21.如圖,已知圓M過點P(10,4),且與直線4x+3y-20=0相切于點A(2,4)(1)求圓M的標準方程;(2)設平行于OA的直線l與圓M相交于B、C兩點,且,求直線l的方程;

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】分別求出兩個不等式的的取值范圍,根據(jù)的取值范圍判斷充分必要性.【詳解】等價于,解得:;等價于,解得:,可以推出,而不能推出,所以是的必要不充分條件,所以“”是“”的必要不充分條件故選:B2、B【解析】根據(jù)函數(shù)的圖象和零點的定義,即可得出答案.【詳解】解:根據(jù)函數(shù)的圖象,可知與軸的交點為,所以函數(shù)的零點為2.故選:B.3、A【解析】結合函數(shù)的圖象及值域分析,當時,存在唯一的非零實數(shù)滿足,然后利用一元二次不等式的性質即可得結論.【詳解】解:因為,所以由函數(shù)的圖象可知其值域為,又時,值域為;時,值域為,所以的值域為時有兩個解,令,則,若存在唯一的非零實數(shù)滿足,則當時,,與一一對應,要使也一一對應,則,,任意,即,因為,所以不等式等價于,即,因,所以,所以,又,所以正實數(shù)的取值范圍為.故選:A.4、D【解析】為銳角,故選5、D【解析】逐一分析選項,得到正確答案.【詳解】A.當時,,所以不正確;B.當時,,所以不正確;C.,當時,,,即,所以不正確;D.,,即,所以正確.故選D.【點睛】本題考查不等式性質的應用,比較兩個數(shù)的大小,1.做差法比較;2.不等式性質比較;3.函數(shù)單調性比較.6、B【解析】由題意知,直線PQ過點A(-1,2),且和直線OA垂直,故其方程為:y﹣2=(x+1),整理得x-2y+5=0故答案為B7、A【解析】根據(jù)充分不必要條件的定義可得答案.【詳解】當時,成立;而時得(),故選:A【點睛】本題考查充分不必要條件判斷,一般可根據(jù)如下規(guī)則判斷:(1)若是的必要不充分條件,則對應集合是對應集合的真子集;(2)是的充分不必要條件,則對應集合是對應集合的真子集;(3)是的充分必要條件,則對應集合與對應集合相等;(4)是的既不充分又不必要條件,對的集合與對應集合互不包含8、D【解析】由表格中的五點,由正弦型函數(shù)的性質可得、、求參數(shù),即可寫出的解析式.【詳解】由表中數(shù)據(jù)知:且,則,∴,即,又,可得.∴.故選:D.9、C【解析】利用直線l1:x+ay+1=0與l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,則,解出即可.【詳解】因為直線l1:x+ay+1=0與l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直.所以,即.解得:.故選:C【點睛】本題考查由兩條直線互相垂直求參數(shù)的問題,屬于基礎題10、C【解析】開機密碼的可能有,,共15種可能,所以小敏輸入一次密碼能夠成功開機的概率是,故選C【考點】古典概型【解題反思】對古典概型必須明確兩點:①對于每個隨機試驗來說,試驗中所有可能出現(xiàn)基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等.只有在同時滿足①、②的條件下,運用的古典概型計算公式(其中n是基本事件的總數(shù),m是事件A包含的基本事件的個數(shù))得出的結果才是正確的二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】有題設得到,利用基本不等式求得最小值.【詳解】由題知,,則,,則,當且僅當時等號成立,故答案為:212、【解析】該幾何體是一個半圓柱,如圖,其體積為.考點:幾何體的體積.13、15海里/小時【解析】先求出船的實際速度,再利用勾股定理得到輪船的速度.【詳解】設船的實際速度為,船速,水的流速,則海里/小時,∴海里/小時.故答案為:15海里/小時14、【解析】求出導函數(shù),然后解不等式確定的范圍后可得最大值【詳解】由題意,,,,,,,∴,的最大值為故答案為:【點睛】本題考查用導數(shù)研究函數(shù)的單調性,考查兩角和與差的正弦公式,考查正弦函數(shù)的性質,根據(jù)導數(shù)與單調性的關系列不等式求解即可.15、【解析】先利用已知求出的值,再求點D的坐標.【詳解】由圖像可知,點在函數(shù)的圖像上,所以,即.因為點在函數(shù)的圖像上,所以,.因為點在函數(shù)的圖像上,所以.又因為,,所以點的坐標為.故答案為【點睛】本題主要考查指數(shù)、對數(shù)和冪函數(shù)的圖像和性質,意在考查學生對這些知識的理解掌握水平.16、x+y-5=0或2x-3y=0【解析】當直線經過原點時,在兩坐標軸上的截距相等,可得其方程為2x﹣3y=0;當直線不經過原點時,可得它的斜率為﹣1,由此設出直線方程并代入P的坐標,可求出其方程為x+y﹣5=0,最后加以綜合即可得到答案【詳解】當直線經過原點時,設方程為y=kx,∵直線經過點P(3,2),∴2=3k,解之得k,此時的直線方程為yx,即2x﹣3y=0;當直線不經過原點時,設方程為x+y+c=0,將點P(3,2)代入,得3+2+c=0,解之得c=﹣5,此時的直線方程為x+y﹣5=0綜上所述,滿足條件的直線方程為:2x﹣3y=0或x+y﹣5=0故答案為:x+y-5=0或2x-3y=0【點睛】本題給出直線經過定點且在兩個軸上的截距相等,求直線的方程.著重考查了直線的基本量與基本形式等知識,屬于基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),單調遞減區(qū)間(2)【解析】(1)先利用三角函數(shù)恒等變換公式對函數(shù)化簡變形得,從而可求出函數(shù)的周期,由可求出函數(shù)的減區(qū)間,(2)由,得,然后利用正弦函數(shù)的性質可求出函數(shù)的值域【小問1詳解】∴令,,解得,函數(shù)的單調遞減區(qū)間為【小問2詳解】∵,∴故有,則的值域為18、(1)A產品的利潤y關于投資x的函數(shù)解析式為:;B產品的利潤y關于投資x的函數(shù)解析式為:.(2)①萬元;②當投入B產品的資金為萬元,投入A產品的資金為萬元,該企業(yè)獲得的總利潤最大,其最大利潤為萬元.【解析】(1)利用待定系數(shù)法,結合函數(shù)圖象上特殊點,運用代入法進行求解即可;(2)①:利用代入法進行求解即可;②利用換元法,結合二次函數(shù)的單調性進行求解即可.【小問1詳解】因為A產品的利潤y與投資x成正比,所以設,由函數(shù)圖象可知,當時,,所以有,所以;因為B產品的利潤y與投資x的算術平方根成正比,所以設,由函數(shù)圖象可知:當時,,所以有,所以;【小問2詳解】①:將200萬元資金平均投入兩種產品的生產,所以A產品的利潤為,B產品的利潤為,所以獲得總利潤為萬元;②:設投入B產品的資金為萬元,則投入A產品的資金為萬元,設企業(yè)獲得的總利潤為萬元,所以,令,所以,當時,即當時,有最大值,最大值為,所以當投入B產品的資金為萬元,投入A產品的資金為萬元,該企業(yè)獲得的總利潤最大,其最大利潤為萬元.19、(1);(2)【解析】(1)根據(jù)題中條件,先由二倍角的正切公式,求出,再根據(jù)任意角的三角函數(shù),即可求出的值;(2)由題中條件,根據(jù)兩角差的正切公式,先得到,再由同角三角函數(shù)基本關系,求出和,利用二倍角公式,以及兩角和的余弦公式,即可求出結果.【詳解】(1)由題意可得,∴,或∵,∴,即,∴(2)∵,,,∴,,∴,,∴20、(1)x∈(2)m≥1【解析】(1)由不等式fx>0的解集為x1<x<2可得x2-bx-c=0的兩根是1,2,根據(jù)根系數(shù)的關系可求b=3和c=-2,代入不等式cx2【詳解】(1)由fx>0的解集為x1<x<2,則-x2+bx+c>0的解集為x1<x<2則1+2=b1×2=-c由cx則解集為x∈(2)由gx=-x則3-m2解出m≥1【點睛】本題考查了三個二次的關系,(1)二次函數(shù)的圖像與x軸交點的橫坐標,二次不等解集的端點值,一元二次方程的根是同一個量的不同表現(xiàn)形式;(2)二次函數(shù)、二次不等式,二次方程常稱作“三個二次”,其中的某類的問題??梢赞D化為另兩類問題加以解決,所以三者的關系密切而重要.其中二次函數(shù)是“三個二次”的核心,通過二次函數(shù)的圖像使它們貫穿一體,使得數(shù)形結合思想在此類問題的解決中十分有效21、(1)(2)2x-y+5=0或2x-y-15=0.【解析】(1)由題意得到圓心M(6,7),半徑,進而得到圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論