2026屆寧波市第七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁(yè)
2026屆寧波市第七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁(yè)
2026屆寧波市第七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁(yè)
2026屆寧波市第七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁(yè)
2026屆寧波市第七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆寧波市第七中學(xué)高二數(shù)學(xué)第一學(xué)期期末考試試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在平行六面體中,底面是邊長(zhǎng)為的正方形,若,且,則的長(zhǎng)為()A. B.C. D.2.拋物線的焦點(diǎn)坐標(biāo)為A. B.C. D.3.已知橢圓經(jīng)過(guò)點(diǎn),當(dāng)該橢圓的四個(gè)頂點(diǎn)構(gòu)成的四邊形的周長(zhǎng)最小時(shí),其標(biāo)準(zhǔn)方程為()A. B.C. D.4.在空間直角坐標(biāo)系中,已知點(diǎn),,則線段的中點(diǎn)坐標(biāo)與向量的模長(zhǎng)分別是()A.;5 B.;C.; D.;5.若雙曲線(,)的一條漸近線經(jīng)過(guò)點(diǎn),則雙曲線的離心率為()A. B.C. D.26.有3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為A. B.C. D.7.已知滿約束條件,則的最大值為()A.0 B.1C.2 D.38.已知雙曲線右頂點(diǎn)為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A.2 B.C. D.9.已知拋物線過(guò)點(diǎn),點(diǎn)為平面直角坐標(biāo)系平面內(nèi)一點(diǎn),若線段的垂直平分線過(guò)拋物線的焦點(diǎn),則點(diǎn)與原點(diǎn)間的距離的最小值為()A. B.C. D.10.經(jīng)過(guò)點(diǎn)且圓心是兩直線與的交點(diǎn)的圓的方程為()A. B.C. D.11.直線與橢圓交于兩點(diǎn),以線段為直徑的圓恰好經(jīng)過(guò)橢圓的左焦點(diǎn),則此橢圓的離心率為()A B.C. D.12.從0,2中選一個(gè)數(shù)字,從1,3,5中選兩個(gè)數(shù)字,組成無(wú)重復(fù)數(shù)字的三位數(shù),其中偶數(shù)的個(gè)數(shù)為()A.24 B.18C.12 D.6二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程是______.14.圓的圓心坐標(biāo)為_(kāi)__________;半徑為_(kāi)__________.15.已知雙曲線C的方程為,,,雙曲線C上存在一點(diǎn)P,使得,則實(shí)數(shù)a的最大值為_(kāi)__________.16.已知一組樣本數(shù)據(jù)5、6、a、6、8的極差為5,若,則其方差為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在①(b-c)cosA=acosC,②sin(B+C)=-1+2sin2,③acosC=b-c,這三個(gè)條件中任選一個(gè)作為已知條件,然后解答問(wèn)題在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知______________(1)求角A的大小;(2)若a=2,且△ABC的面積為2,求b+c18.(12分)如圖,已知拋物線的焦點(diǎn)為F,拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1(1)求拋物線C的方程;(2)過(guò)點(diǎn)F作互相垂直的兩條直線l1,l2,l1與拋物線C交于A,B兩點(diǎn),l2與拋物線C交于C,D兩點(diǎn),M,N分別為弦AB,CD的中點(diǎn),求|MF|·|NF|的最小值19.(12分)已知橢圓的離心率為,短軸端點(diǎn)到焦點(diǎn)的距離為2(1)求橢圓的方程;(2)設(shè)為橢圓上任意兩點(diǎn),為坐標(biāo)原點(diǎn),且以為直徑的圓經(jīng)過(guò)原點(diǎn),求證:原點(diǎn)到直線的距離為定值,并求出該定值20.(12分)如圖,在四面體ABCD中,,平面ABC,點(diǎn)M為棱AB的中點(diǎn),,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值21.(12分)已知點(diǎn)、分別是橢圓C:)的左、右焦點(diǎn),點(diǎn)P在橢圓C上,當(dāng)∠PF1F2=時(shí),面積達(dá)到最大,且最大值為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線l:與橢圓C交于A、B兩點(diǎn),求面積的最大值.22.(10分)已知.(1)當(dāng),時(shí),求中含項(xiàng)的系數(shù);(2)用、表示,寫(xiě)出推理過(guò)程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】由向量線性運(yùn)算得,利用數(shù)量積的定義和運(yùn)算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.2、D【解析】拋物線的標(biāo)準(zhǔn)方程為,從而可得其焦點(diǎn)坐標(biāo)【詳解】拋物線的標(biāo)準(zhǔn)方程為,故其焦點(diǎn)坐標(biāo)為,故選D.【點(diǎn)睛】本題考查拋物線的性質(zhì),屬基礎(chǔ)題3、A【解析】把點(diǎn)代入橢圓方程得,寫(xiě)出橢圓頂點(diǎn)坐標(biāo),計(jì)算四邊形周長(zhǎng)討論它取最小值時(shí)的條件即得解.【詳解】依題意得,橢圓的四個(gè)頂點(diǎn)為,順次連接這四個(gè)點(diǎn)所得四邊形為菱形,其周長(zhǎng)為,,當(dāng)且僅當(dāng),即時(shí)取“=”,由得a2=12,b2=4,所求標(biāo)準(zhǔn)方程為.故選:A【點(diǎn)睛】給定兩個(gè)正數(shù)和(兩個(gè)正數(shù)倒數(shù)和)為定值,求這兩個(gè)正數(shù)倒數(shù)和(兩個(gè)正數(shù)和)的最值問(wèn)題,可借助基本不等式中“1”的妙用解答.4、B【解析】根據(jù)給定條件利用中點(diǎn)坐標(biāo)公式及空間向量模長(zhǎng)的坐標(biāo)表示計(jì)算作答.【詳解】因點(diǎn),,所以線段的中點(diǎn)坐標(biāo)為,.故選:B5、A【解析】先求出漸近線方程,進(jìn)而將點(diǎn)代入直線方程得到a,b關(guān)系,進(jìn)而求出離心率.【詳解】由題意,雙曲線的漸近線方程為:,而一條漸近線過(guò)點(diǎn),則,.故選:A.6、A【解析】每個(gè)同學(xué)參加的情形都有3種,故兩個(gè)同學(xué)參加一組的情形有9種,而參加同一組的情形只有3種,所求的概率為p=選A7、B【解析】作出給定不等式表示的平面區(qū)域,再借助幾何意義即可求出的最大值.【詳解】畫(huà)出不等式組表示的平面區(qū)域,如圖中陰影,其中,,目標(biāo)函數(shù),即表示斜率為2,縱截距為的平行直線系,作出直線,平移直線到直線,使其過(guò)點(diǎn)A時(shí),的縱截距最小,最大,則,所以的最大值為1.故選:B8、B【解析】,得出到漸近線的距離為,由此可得的關(guān)系,從而求得離心率【詳解】因?yàn)椋?,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡(jiǎn)得故選:B9、B【解析】將點(diǎn)的坐標(biāo)代入拋物線的方程,求出的值,可求得拋物線的方程,求出的坐標(biāo),分析可知點(diǎn)的軌跡是以點(diǎn)為圓心,半徑為的圓,利用圓的幾何性質(zhì)可求得點(diǎn)與原點(diǎn)間的距離的最小值.【詳解】將點(diǎn)的坐標(biāo)代入拋物線的方程得,可得,故拋物線的方程為,易知點(diǎn),由中垂線的性質(zhì)可得,則點(diǎn)的軌跡是以點(diǎn)為圓心,半徑為的圓,故點(diǎn)的軌跡方程為,如下圖所示:由圖可知,當(dāng)點(diǎn)、、三點(diǎn)共線且在線段上時(shí),取最小值,且.故選:B.10、B【解析】求出圓心坐標(biāo)和半徑后,直接寫(xiě)出圓的標(biāo)準(zhǔn)方程.【詳解】由得,即所求圓的圓心坐標(biāo)為.由該圓過(guò)點(diǎn),得其半徑為1,故圓的方程為.故選:B.【點(diǎn)睛】本題考查了圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.11、D【解析】根據(jù)題意作出示意圖,根據(jù)圓的性質(zhì)以及直線的傾斜角求解出的長(zhǎng)度,再根據(jù)橢圓的定義求解出的關(guān)系,則橢圓離心率可求.【詳解】設(shè)橢圓的左右焦點(diǎn)分別為,如下圖:因?yàn)橐跃€段為直徑的圓恰好經(jīng)過(guò)橢圓的左焦點(diǎn),所以且,所以,又因?yàn)榈膬A斜角為,所以,所以為等邊三角形,所以,所以,因?yàn)椋?,所以,所以,所以,故選:D.12、C【解析】根據(jù)題意,結(jié)合計(jì)數(shù)原理中的分步計(jì)算,以及排列組合公式,即可求解.【詳解】根據(jù)題意,要使組成無(wú)重復(fù)數(shù)字的三位數(shù)為偶數(shù),則從0,2中選一個(gè)數(shù)字為個(gè)位數(shù),有種可能,從1,3,5中選兩個(gè)數(shù)字為十位數(shù)和百位數(shù),有種可能,故這個(gè)無(wú)重復(fù)數(shù)字的三位數(shù)為偶數(shù)的個(gè)數(shù)為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、x-y-2=0【解析】解:因?yàn)榍€在點(diǎn)(1,-1)處的切線方程是由點(diǎn)斜式可知為x-y-2=014、①.②.【解析】配方后可得圓心坐標(biāo)和半徑【詳解】將圓的一般方程化為圓標(biāo)準(zhǔn)方程是,圓心坐標(biāo)為,半徑為故答案為:;15、2【解析】設(shè)出,根據(jù)條件推出在圓上運(yùn)動(dòng),根據(jù)題意要使雙曲線和圓有交點(diǎn),則得答案.【詳解】設(shè)點(diǎn),由得:,所以,化簡(jiǎn)得:,即滿足條件的點(diǎn)在圓上運(yùn)動(dòng),又點(diǎn)存在于上,故雙曲線與圓有交點(diǎn),則,即實(shí)數(shù)a的最大值為2,故答案為:216、2【解析】根據(jù)極差的定義可求得a的值,再根據(jù)方差公式可求得結(jié)果.【詳解】因?yàn)樵摻M數(shù)據(jù)的極差為5,,所以,解得.因?yàn)椋栽摻M數(shù)據(jù)的方差為故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)選①:化邊為角化簡(jiǎn)求出cos;選②:利用倍角公式將sin()=?1+2sin2化簡(jiǎn)為sin=?cos,再利用輔助角公式求解即可;選③:化邊為角化簡(jiǎn)運(yùn)算求解(2)利用面積公式求得,再利用余弦定理可得,計(jì)算即可.【小問(wèn)1詳解】選①∵∴sincos=sinCcos+sincosC=sin(+C)=sin∴cos∵∈,∴=選②∵sin()=?1+2sin2,∴sin=?cos∴sin(+A)=1∵A∈∴A=選③∵∴∴∵A∈,∴A=【小問(wèn)2詳解】∵,∴又∵∴即18、(1)(2)8【解析】(1)由拋物線C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,即可求得拋物線的方程;(2)設(shè)直線AB的斜率為k,則直線CD的斜率為,得到直線AB的方程為,聯(lián)立方程,求得,進(jìn)而求得的坐標(biāo),得到的表達(dá)式,結(jié)合基本不等式,即可求解.【小問(wèn)1詳解】解:因?yàn)閽佄锞€C上的點(diǎn)到準(zhǔn)線的最小距離為1,所以,解得,所以拋物線C的方程為【小問(wèn)2詳解】解:由(1)可知焦點(diǎn)為F(1,0),由已知可得ABCD,所以直線AB,CD的斜率都存在且均不為0,設(shè)直線AB斜率為k,則直線CD的斜率為,所以直線AB的方程為,聯(lián)立方程,消去x得,設(shè)點(diǎn)A(x1,y1),B(x2,y2),則,因?yàn)镸(xM,yM)為弦AB的中點(diǎn),所以,由,得,所以點(diǎn),同理可得,所以,=,所以,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以的最小值為19、(1)(2)證明見(jiàn)解析,定值為【解析】(1)根據(jù)題意得到,,得到橢圓方程.(2)考慮直線斜率存在和不存在兩種情況,聯(lián)立方程,根據(jù)韋達(dá)定理得到根與系數(shù)的關(guān)系,將題目轉(zhuǎn)化為,化簡(jiǎn)得到,代入計(jì)算得到答案.【小問(wèn)1詳解】橢圓的離心率為,短軸端點(diǎn)到焦點(diǎn)的距離為,故,,故橢圓方程為.【小問(wèn)2詳解】當(dāng)直線斜率存在時(shí),設(shè)直線方程為,,,則,即,,以為直徑的圓經(jīng)過(guò)原點(diǎn),故,即,即,化簡(jiǎn)整理得到:,原點(diǎn)到直線的距離為.當(dāng)直線斜率不存在時(shí),為等腰直角三角形,設(shè),則,解得,即直線方程為,到原點(diǎn)的距離為.綜上所述:原點(diǎn)到直線的距離為定值.【點(diǎn)睛】本題考查了橢圓方程,橢圓中的定值問(wèn)題,意在考查學(xué)生的計(jì)算能力,轉(zhuǎn)化能力和綜合應(yīng)用能力,其中將圓過(guò)原點(diǎn)轉(zhuǎn)化為是解題的關(guān)鍵.20、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點(diǎn),分別以,,方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系,分別求得平面BCD的一個(gè)法向量和平面DCM的一個(gè)法向量,然后由求解【小問(wèn)1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問(wèn)2詳解】如圖,以A為原點(diǎn),分別以,,的方向?yàn)閤軸,y軸,z軸的正方向的空間直角坐標(biāo)系,則,,,,,依題意,可得,設(shè)為平面BCD的一個(gè)法向量,則,不妨令,可得設(shè)為平面DCM的一個(gè)法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余弦值為21、(1)(2)3【解析】(1)根據(jù)焦點(diǎn)三角形的性質(zhì)可求出,從而可得標(biāo)準(zhǔn)方程,(2)聯(lián)立直線方程和橢圓方程,消元后利用公式表示三角形面積,從而可求面積的最大值.小問(wèn)1詳解】△PF1F2面積達(dá)到最大時(shí)為橢圓的上頂點(diǎn)或下頂點(diǎn),而此時(shí)∠PF1F2=,故面積最大時(shí)為等邊三角形,故,因面積的最大值為,故,故,故橢圓的標(biāo)準(zhǔn)方程

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論