2026屆浙江省“七彩陽光”數學高一上期末綜合測試試題含解析_第1頁
2026屆浙江省“七彩陽光”數學高一上期末綜合測試試題含解析_第2頁
2026屆浙江省“七彩陽光”數學高一上期末綜合測試試題含解析_第3頁
2026屆浙江省“七彩陽光”數學高一上期末綜合測試試題含解析_第4頁
2026屆浙江省“七彩陽光”數學高一上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆浙江省“七彩陽光”數學高一上期末綜合測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數,若不等式對任意實數x恒成立,則a的取值范圍為()A B.C. D.2.已知函數,則的圖像大致是()A. B.C. D.3.已知直線⊥平面,直線平面,給出下列命題:①∥②⊥∥③∥⊥④⊥∥其中正確命題的序號是A.①③ B.②③④C.①②③ D.②④4.已知函數,,若對任意,總存在,使得成立,則實數取值范圍為A. B.C. D.5.若函數在單調遞增,則實數a的取值范圍為()A. B.C. D.6.直線的傾斜角為A.30° B.60°C.120° D.150°7.命題“x0,x2x0”的否定是()A.x0,x2x0 B.x0,x2x0C.x0,x2x0 D.x0,x2x08.()A.1 B.0C.-1 D.9.已知函數,則“”是“函數在區(qū)間上單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.函數在區(qū)間上的最小值是A. B.0C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知滿足任意都有成立,那么的取值范圍是___________.12.《九章算術》是我國古代數學成就的杰出代表作,其中"方田"章給出了計算弧田面積時所用的經驗公式,即弧田面積(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦圍成,公式中“弦”指圓弧所對弦長,“矢”指圓弧頂到弦的距離(等于半徑長與圓心到弦的距離之差),現有圓心角為2,半徑為1米的弧田,按照上述經驗公式計算所得弧田面積是_________平方米.(結果保留兩位有效數字,參考數據:,)13.已知函數,若對恒成立,則實數的取值范圍是___________.14.已知函數,若是的最大值,則實數t的取值范圍是______15.已知a,b為直線,α,β,γ為平面,有下列四個命題:(1)a∥α,b∥β,則a∥b;(2)a⊥γ,b⊥γ,則a∥b;(3)a∥b,b?α,則a∥α;(4)a⊥b,a⊥α,則b∥α;其中正確命題是__16.已知命題“?x∈R,e?x≥a”三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,已知正三棱柱的底面邊長為2,側棱長為,點E在側棱上,點F在側棱上,且(1)求證:;(2)求二面角的大小18.已知向量m=(cos,sin),n=(2+sinx,2-cos),函數=m·n,x∈R.(1)求函數的最大值;(2)若且=1,求值.19.已知.(1)化簡,并求的值;(2)若,求的值20.已知二次函數滿足條件和,(1)求;(2)求在區(qū)間()上的最小值21.已知角的頂點在坐標原點,始邊與軸非負半軸重合,終邊經過點(1)求,;(2)求的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】先分析出的奇偶性,再得出的單調性,由單調性結合奇偶性解不等式得到,再利用均值不等式可得答案.【詳解】的定義域滿足,由,所以在上恒成立.所以的定義域為則所以,即為奇函數.設,由上可知為奇函數.當時,,均為增函數,則在上為增函數.所以在上為增函數.又為奇函數,則在上為增函數,且所以在上為增函數.所以在上為增函數.由,即所以對任意實數x恒成立即,由當且僅當,即時得到等號.所以故選:C2、C【解析】判斷函數的奇偶性,再利用時,函數值的符號即可求解.【詳解】由,則,所以函數為奇函數,排除B、D.當,則,所以,,所以,排除A.故選:C3、A【解析】利用線面、面面平行的性質和判斷以及線面、面面垂直的性質和判斷可得結果.【詳解】②若,則與不一定平行,還可能為相交和異面;④若,則與不一定平行,還可能是相交.故選A.【點睛】本題是一道關于線線、線面、面面關系的題目,解答本題的關鍵是熟練掌握直線與平面和平面與平面的平行、垂直的性質定理和判斷定理.4、B【解析】分別求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的關系式,解出即可.【詳解】對于函數,當時,,由,可得,當時,,由,可得,對任意,,對于函數,,,,對于,使得,對任意,總存在,使得成立,,解得,實數的取值范圍為,故選B【點睛】本題主要考查函數的最值、全稱量詞與存在量詞的應用.屬于難題.解決這類問題的關鍵是理解題意、正確把問題轉化為最值和解不等式問題,全稱量詞與存在量詞的應用共分四種情況:(1)只需;(2),只需;(3),只需;(4),,.5、D【解析】根據給定條件利用對數型復合函數單調性列式求解作答.【詳解】函數中,令,函數在上單調遞增,而函數在上單調遞增,則函數在上單調遞增,且,因此,,解得,所以實數a的取值范圍為.故選:D6、A【解析】直線的斜率為,所以傾斜角為30°.故選A.7、B【解析】根據含有一個量詞命題否定的定義,即可得答案.【詳解】命題“x0,x2x0”的否定是:“x0,x2x0”.故選:B8、A【解析】用誘導公式化簡計算.【詳解】因為,所以,所以原式.故選:A.【點睛】本題考查誘導公式,考查特殊角的三角函數值.屬于基礎題.9、A【解析】先由在區(qū)間上單調遞增,求出的取值范圍,再根據充分條件,必要條件的定義即可判斷.【詳解】解:的對稱軸為:,若在上單調遞增,則,即,在區(qū)間上單調遞增,反之,在區(qū)間上單調遞增,,故“”是“函數在區(qū)間上單調遞增”的充分不必要條件.故選:A.10、A【解析】函數,可得的對稱軸為,利用單調性可得結果【詳解】函數,其對稱軸為,在區(qū)間內部,因為拋物線的圖象開口向上,所以當時,在區(qū)間上取得最小值,其最小值為,故選A【點睛】本題考查二次函數的最值,注意分析的對稱軸,屬于基礎題.若函數為一元二次函數,常采用配方法求函數求值域,其關鍵在于正確化成完全平方式,并且一定要先確定其定義域.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意可知,分段函數在上單調遞減,因此分段函數的每一段都是單調遞減,且左邊一段的最小值不小于右邊的最大值,即可得到實數的取值范圍.【詳解】由任意都有成立,可知函數在上單調遞減,又因,所以,解得.故答案為:.12、【解析】由題設可得“弦”為,“矢”為,結合弧田面積公式求面積即可.【詳解】由題設,“弦”為,“矢”為,所以所得弧田面積是.故答案為:.13、【解析】需要滿足兩個不等式和對都成立.【詳解】和對都成立,令,得在上恒成立,當時,只需即可,解得;當時,只需即可,解得(舍);綜上故答案為:14、【解析】先求出時最大值為,再由是的最大值,解出t的范圍.【詳解】當時,,由對勾函數的性質可得:在時取得最大值;當時,,且是的最大值,所以,解得:.故答案為:15、②【解析】對于①,,則,位置關系不確定,的位置關系不能確定;對于②,由垂直于同一平面的兩直線平行知,結論正確;對于③,,則或;對于④,,則或,故答案為②.【方法點晴】本題主要考查線面平行的判定與性質、面面垂直的性質及線面垂直的判定,屬于難題.空間直線、平面平行或垂直等位置關系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.16、a≤0【解析】根據?x∈R,e?x≥a成立,【詳解】因為?x∈R,e所以e?則a≤0,故答案為:a≤0三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)根據幾何體的結構特征,可以為坐標原點,分別為軸和軸建立空間直角坐標系,寫出各個點的坐標.(1)證明即即可;(2)分別求出平面的一個法向量為和側面的一個法向量為,根據求出的法向量的夾角來求二面角的大小.試題解析:建立如圖所示的空間直角坐標系,則由已知可得(1)證明:,所以.(2),設平面的一個法向量為,由,得,即,解得,可取設側面的一個法向量為,由,及可取.設二面角的大小為,于是由為銳角可得所以.即所求二面角的大小為.考點:空間向量證明直線與直線垂直及求解二面角.18、(1)f(x)的最大值是4(2)-【解析】(1)先由向量數量積坐標表示得到函數的三角函數解析式,再將其化簡得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合條件的x的三角函數值,再有余弦的和角公式求的值【詳解】(1)因為f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因為f(x)=1,所以sin=.又因為x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【點睛】本題考查平面向量的綜合題19、(1),(2)【解析】(1)利用三角函數誘導公式將化簡,將代入求值即可;(2)利用將變形為,繼而變形為,代入求值即可.小問1詳解】則【小問2詳解】由(1)知,則20、(1);(2).【解析】(1)由二次函數可設,再利用進行化簡分析即可.(2)由(1)可知,對稱軸為,通過討論的范圍,根據函數的單調性,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論