版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
貴州省畢節(jié)二中2026屆高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某次生物實(shí)驗(yàn)6個(gè)小組的耗材質(zhì)量(單位:千克)分別為1.71,1.58,1.63,1.43,1.85,1.67,則這組數(shù)據(jù)的中位數(shù)是()A.1.63 B.1.67C.1.64 D.1.652.在中國(guó)古代,人們用圭表測(cè)量日影長(zhǎng)度來(lái)確定節(jié)氣,一年之中日影最長(zhǎng)一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣,其日影長(zhǎng)依次成等差數(shù)列,若冬至、立春、春分日影長(zhǎng)之和為31.5尺,小寒、雨水,清明日影長(zhǎng)之和為28.5尺,則大寒、驚蟄、谷雨日影長(zhǎng)之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺3.橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,則實(shí)數(shù)m的值為()A.2 B.4C. D.4.設(shè)為雙曲線與橢圓的公共的左右焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)是以線段為底邊的等腰三角形,若橢圓的離心率范圍為,則雙曲線的離心率取值范圍是()A. B.C. D.5.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.以軸為對(duì)稱軸,頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)到準(zhǔn)線的距離為4的拋物線方程是()A. B.C.或 D.或7.如圖,P是橢圓第一象限上一點(diǎn),A,B,C是橢圓與坐標(biāo)軸的交點(diǎn),O為坐標(biāo)原點(diǎn),過(guò)A作AN平行于直線BP交y軸于N,直線CP交x軸于M,直線BP交x軸于E.現(xiàn)有下列三個(gè)式子:①;②;③.其中為定值的所有編號(hào)是()A.①③ B.②③C.①② D.①②③8.南北朝時(shí)期杰出的數(shù)學(xué)家祖沖之的兒子祖暅在數(shù)學(xué)上也有很多創(chuàng)造,其最著名的成就是祖暅原理:夾在兩個(gè)平行平面之間的幾何體,被平行于這兩個(gè)平面的任意平面所截,如果截得的兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等,現(xiàn)有一個(gè)圓柱體和一個(gè)長(zhǎng)方體,它們的底面面積相等,高也相等,若長(zhǎng)方體的底面周長(zhǎng)為,圓柱體的體積為,根據(jù)祖暅原理,可推斷圓柱體的高()A.有最小值 B.有最大值C.有最小值 D.有最大值9.2021年6月17日9時(shí)22分,搭載神舟十二號(hào)載人飛船的長(zhǎng)征二號(hào)F遙十二運(yùn)載火箭,在酒泉衛(wèi)星發(fā)射中心點(diǎn)火發(fā)射.此后,神舟十二號(hào)載人飛船與火箭成功分離,進(jìn)入預(yù)定軌道,并快速完成與“天和”核心艙的對(duì)接,聶海勝、劉伯明、湯洪波3名宇航員成為核心艙首批“入住人員”,并在軌駐留3個(gè)月,開(kāi)展艙外維修維護(hù),設(shè)備更換,科學(xué)應(yīng)用載荷等一系列操作.已知神舟十二號(hào)飛船的運(yùn)行軌道是以地心為焦點(diǎn)的橢圓,設(shè)地球半徑為R,其近地點(diǎn)與地面的距離大約是,遠(yuǎn)地點(diǎn)與地面的距離大約是,則該運(yùn)行軌道(橢圓)的離心率大約是()A. B.C. D.10.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.11.等比數(shù)列的前項(xiàng)和為,前項(xiàng)積為,,當(dāng)最小時(shí),的值為()A.3 B.4C.5 D.612.已知橢圓:,左、右焦點(diǎn)分別為,過(guò)的直線交橢圓于兩點(diǎn),若的最大值為5,則的值是A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線被圓所截得的弦中,最短弦所在直線的一般方程是__________14.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)___________.15.設(shè)正項(xiàng)等比數(shù)列的公比為,前項(xiàng)和為,若,則_______________.16.若向量滿足,則_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知空間中三點(diǎn),,,設(shè),(1)求向量與向量的夾角的余弦值;(2)若與互相垂直,求實(shí)數(shù)的值18.(12分)如圖,在長(zhǎng)方體中,,,,M為上一點(diǎn),且(1)求點(diǎn)到平面的距離;(2)求二面角的余弦值19.(12分)如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,(1)求證:平面ACF;(2)在線段PB上是否存在一點(diǎn)H,使得CH與平面ACF所成角的正弦值為?若存在,求出線段PH的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由20.(12分)在中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足(1)求A的大??;(2)若,的面積為,求的周長(zhǎng)21.(12分)已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且(1)求拋物線的方程;(2)過(guò)點(diǎn)作直線交拋物線于兩點(diǎn),設(shè),判斷是否為定值?若是,求出該定值;若不是,說(shuō)明理由.22.(10分)在數(shù)列中,,,記.(1)求證:數(shù)列為等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)試判斷數(shù)列的增減性,并說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】將已有數(shù)據(jù)從小到大排序,根據(jù)中位數(shù)的定義確定該組數(shù)據(jù)的中位數(shù).【詳解】由題設(shè),將數(shù)據(jù)從小到大排序可得:,∴中位數(shù)為.故選:D.2、A【解析】由題意可知,十二個(gè)節(jié)氣其日影長(zhǎng)依次成等差數(shù)列,設(shè)冬至日的日影長(zhǎng)為尺,公差為尺,利用等差數(shù)列的通項(xiàng)公式,求出,即可求出,從而得到答案【詳解】設(shè)從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個(gè)節(jié)氣其日影長(zhǎng)依次成等差數(shù)列{},如冬至日的日影長(zhǎng)為尺,設(shè)公差為尺.由題可知,所以,,,,故選:A3、C【解析】由焦點(diǎn)坐標(biāo)得到,求解即可.【詳解】根據(jù)焦點(diǎn)坐標(biāo)可知,橢圓焦點(diǎn)在y軸上,所以有,解得故選:C.4、A【解析】設(shè)橢圓的標(biāo)準(zhǔn)方程為,根據(jù)橢圓和雙曲線的定義可得到兩圖形離心率之間的關(guān)系,再根據(jù)橢圓的離心率范圍可得雙曲線的離心率取值范圍.【詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為,,則有已知,兩式相減得,即,,因?yàn)?,解得故選:A.5、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.6、C【解析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標(biāo)準(zhǔn)方程.【詳解】依題意設(shè)拋物線方程為因?yàn)榻裹c(diǎn)到準(zhǔn)線的距離為4,所以,所以,所以拋物線方程或故選:C7、D【解析】根據(jù)斜率的公式,可以得到的值是定值,然后結(jié)合已知逐一判斷即可.【詳解】設(shè),所以有,,因此,所以有,,,,,,故,,.故選:D【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用斜率公式得到之間的關(guān)系是解題的關(guān)鍵.8、C【解析】由條件可得長(zhǎng)方體的體積為,設(shè)長(zhǎng)方體的底面相鄰兩邊分別為,根據(jù)基本不等式,可求出底面面積的最大值,進(jìn)而求出高的最小值,得出結(jié)論.【詳解】依題意長(zhǎng)方體的體積為,設(shè)圓柱的高為長(zhǎng)方體的底面相鄰兩邊分別為,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,.故選:C.【點(diǎn)睛】本題以數(shù)學(xué)文化為背景,考查基本不等式求最值,要認(rèn)真審題,理解題意,屬于基礎(chǔ)題.9、A【解析】以運(yùn)行軌道長(zhǎng)軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,根據(jù)題意列出方程組,解方程組即可.【詳解】以運(yùn)行軌道長(zhǎng)軸所在直線為x軸,地心F為右焦點(diǎn)建立平面直角坐標(biāo)系,設(shè)橢圓方程為,其中,根據(jù)題意有,,所以,,所以橢圓的離心率故選:A10、D【解析】根據(jù)漸近線方程求得關(guān)系,結(jié)合離心率的計(jì)算公式,即可求得結(jié)果.【詳解】因?yàn)殡p曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.11、B【解析】根據(jù)等比數(shù)列相關(guān)計(jì)算得到,,進(jìn)而求出與,代入后得到,利用指數(shù)函數(shù)和二次函數(shù)單調(diào)性得到當(dāng)時(shí),取得最小值.【詳解】顯然,由題意得:,,兩式相除得:,將代入,解得:,所以,所以,,所以,其中單調(diào)遞增,所以當(dāng)時(shí),取得最小值.故選:B12、D【解析】由題意可知橢圓是焦點(diǎn)在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8﹣|AB|,再由過(guò)橢圓焦點(diǎn)的弦中通徑的長(zhǎng)最短,可知當(dāng)AB垂直于x軸時(shí)|AB|最小,把|AB|的最小值b2代入|BF2|+|AF2|=8﹣|AB|,由|BF2|+|AF2|的最大值等于5列式求b的值即可【詳解】由0<b<2可知,焦點(diǎn)在x軸上,∵過(guò)F1的直線l交橢圓于A,B兩點(diǎn),則|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8∴|BF2|+|AF2|=8﹣|AB|當(dāng)AB垂直x軸時(shí)|AB|最小,|BF2|+|AF2|值最大,此時(shí)|AB|=b2,則5=8﹣b2,解得b,故選D【點(diǎn)睛】本題考查直線與圓錐曲線的關(guān)系,考查了橢圓的定義,考查橢圓的通徑公式,考查計(jì)算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出直線所過(guò)的定點(diǎn),當(dāng)該定點(diǎn)為弦的中點(diǎn)時(shí)弦長(zhǎng)最短,利用點(diǎn)斜式求出直線方程,整理成一般式即可.【詳解】即,令,解得即直線過(guò)定點(diǎn)圓的圓心為,半徑為,最短弦所在直線的方程為整理得最短弦所在直線的一般方程是故答案為:.14、##【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,根據(jù)其準(zhǔn)線方程即可求得實(shí)數(shù).【詳解】拋物線化為標(biāo)準(zhǔn)方程:,其準(zhǔn)線方程是,而所以,即,故答案為:15、【解析】由可知公比,所以直接利用等比數(shù)列前項(xiàng)和公式化簡(jiǎn),即可求出【詳解】解:因?yàn)?,所以,所以,所以,化?jiǎn)得,因?yàn)榈缺葦?shù)列的各項(xiàng)為正數(shù),所以,所以,故答案為:【點(diǎn)睛】此題考查等比數(shù)列前項(xiàng)和公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題16、【解析】根據(jù)題目條件,利用模的平方可以得出答案【詳解】∵∴∴.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)或.【解析】(1)坐標(biāo)表示出、,利用向量夾角的坐標(biāo)表示求夾角余弦值;(2)坐標(biāo)表示出k+、k-2,利用向量垂直的坐標(biāo)表示列方程求的值.【詳解】由題設(shè),=(1,1,0),=(-1,0,2)(1)cosθ=,所以和的夾角余弦值為.(2)k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),k-2=(k+2,k,-4),又(k+)⊥(k-2),則(k-1,k,2)·(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0,解得k=-或2.18、(1)(2)【解析】(1)以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系,利用空間向量求解,(2)求出和的法向量,利用空間向量求解【小問(wèn)1詳解】以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系由,,,,所以,,,因此,,,設(shè)平面的法向量,則,,所以,取,則,,于是,所以點(diǎn)到平面的距離【小問(wèn)2詳解】由,,設(shè)平面的法向量,則,,所以,取,則,,于是,由(1)知平面的法向量為,記二面角的平面角為,則,由圖可知二面角為銳角,所以所求二面角的余弦值為19、(1)證明見(jiàn)解析(2)存在,的長(zhǎng)為或,理由見(jiàn)解析.【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得平面.(2)設(shè),求出,根據(jù)與平面所成角的正弦值列方程,由此求得,進(jìn)而求得的長(zhǎng).小問(wèn)1詳解】依題意,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,,以為空間坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,,,設(shè)平面法向量為,則,故可設(shè),由于,所以平面.【小問(wèn)2詳解】存在,理由如下:設(shè),,,,依題意與平面所成角的正弦值為,即,,解得或.,即的長(zhǎng)為或,使與平面所成角的正弦值為.20、(1)(2)【解析】(1)通過(guò)正弦定理將邊化為角的關(guān)系,可得,進(jìn)而可得結(jié)果;(2)由面積公式得,結(jié)合余弦定理得,進(jìn)而得結(jié)果.【小問(wèn)1詳解】∵∴由正弦定理,得∴∵,∴,故【小問(wèn)2詳解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周長(zhǎng)為21、(1)(2)是,0【解析】(1)根據(jù)題意,設(shè)拋物線的方程為:,則,,進(jìn)而根據(jù)得,進(jìn)而得答案;(2)直線的方程為,進(jìn)而聯(lián)立方程,結(jié)合韋達(dá)定理與向量數(shù)量積運(yùn)算化簡(jiǎn)整理即可得答案.【小問(wèn)1詳解】解:由題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026大唐西藏能源開(kāi)發(fā)有限公司招聘4人備考題庫(kù)完整參考答案詳解
- 2025-2026人教版小學(xué)二年級(jí)語(yǔ)文上學(xué)期測(cè)試卷
- 電信副總考試題及答案
- 2025-2026人教版五年級(jí)語(yǔ)文期末測(cè)試
- 2025 小學(xué)六年級(jí)科學(xué)上冊(cè)科學(xué)教育中的信息化教學(xué)工具熟練使用實(shí)例課件
- 新食品衛(wèi)生管理制度
- 鄉(xiāng)村衛(wèi)生站病歷管理制度
- 衛(wèi)生院領(lǐng)導(dǎo)學(xué)法制度
- 美容院衛(wèi)生管理六項(xiàng)制度
- 零食店衛(wèi)生制度
- 2026屆新高考語(yǔ)文三輪沖刺復(fù)習(xí):二元思辨作文審題構(gòu)思寫(xiě)作
- 行業(yè)背景分析報(bào)告
- 2025中國(guó)農(nóng)業(yè)大學(xué)管理服務(wù)崗位(非事業(yè)編)招聘1人筆試備考試題附答案解析
- 2025福建省融資擔(dān)保有限責(zé)任公司招聘4人筆試試題附答案解析
- 工程管理費(fèi)合同協(xié)議
- 協(xié)助審計(jì)協(xié)議書(shū)范本
- GB/T 13471-2025節(jié)能項(xiàng)目經(jīng)濟(jì)效益計(jì)算與評(píng)價(jià)方法
- 2025年小學(xué)一年級(jí)語(yǔ)文拼音測(cè)試試卷(含答案)
- 電力公司安全第一課課件
- 2025年征兵心理模擬測(cè)試試題及答案
- 注塑車(chē)間人員管理改善方案
評(píng)論
0/150
提交評(píng)論