河南洛陽市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
河南洛陽市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
河南洛陽市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
河南洛陽市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
河南洛陽市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

河南洛陽市2026屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三棱錐中,,,則異面直線PC與AB所成角的余弦值是()A. B.C. D.2.已知兩條不同直線和平面,下列判斷正確的是()A.若則 B.若則C.若則 D.若則3.若圓與圓相外切,則的值為()A. B.C.1 D.4.已知函數(shù),要使函數(shù)有三個零點,則的取值范圍是()A. B.C. D.5.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點;④兩條平行直線與間的距離為.以上四個命題中正確的命題個數(shù)為()A. B.C. D.6.在中,,,為所在平面上任意一點,則的最小值為()A.1 B.C.-1 D.-27.若方程表示雙曲線,則實數(shù)m的取值范圍是()A. B.C. D.8.某中學(xué)高一年級有200名學(xué)生,高二年級有260名學(xué)生,高三年級有340名學(xué)生,為了了解該校高中學(xué)生完成作業(yè)情況,現(xiàn)用分層抽樣的方法抽取一個容量為40的樣本,則高二年級抽取的人數(shù)為()A.10 B.13C.17 D.269.若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則下列不等式一定成立的是()A. B.C. D.10.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認(rèn)識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)的導(dǎo)函數(shù),若,且對,,且總有,則下列選項正確的是()A. B.C. D.11.下列說法錯誤的是()A.“若,則”的逆否命題是“若,則”B.“”的否定是”C.“是"”的必要不充分條件D.“或是"”的充要條件12.某校去年有1100名同學(xué)參加高考,從中隨機抽取50名同學(xué)總成績進行分析,在這個調(diào)查中,下列敘述錯誤的是A.總體是:1100名同學(xué)的總成績 B.個體是:每一名同學(xué)C.樣本是:50名同學(xué)的總成績 D.樣本容量是:50二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的左、右焦點分別為,,P為橢圓上一點,滿足(O為坐標(biāo)原點).若,則橢圓的離心率為______14.已知直線與曲線,在曲線上隨機取一點,則點到直線的距離不大于的概率為__________.15.設(shè)分別是平面的法向量,若,則實數(shù)的值是________16.已知點在直線上,則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點О是正四棱錐的底面中心,四邊形PQDO矩形,(1)點B到平面APQ的距離:(2)設(shè)E為棱PC上的點,且,若直線DE與平面APQ所成角的正弦值為,試求實數(shù)的值18.(12分)在柯橋古鎮(zhèn)的開發(fā)中,為保護古橋OA,規(guī)劃在O的正東方向100m的C處向?qū)Π禔B建一座新橋,使新橋BC與河岸AB垂直,并設(shè)立一個以線段OA上一點M為圓心,與直線BC相切的圓形保護區(qū)(如圖所示),且古橋兩端O和A與圓上任意一點的距離都不小于50m,經(jīng)測量,點A位于點O正南方向25m,,建立如圖所示直角坐標(biāo)系(1)求新橋BC的長度;(2)當(dāng)OM多長時,圓形保護區(qū)的面積最???19.(12分)如圖,四棱錐中,底面為矩形,底面,,點是棱的中點(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值20.(12分)某公園有一形狀可抽象為圓柱的標(biāo)志性景觀建筑物,該建筑物底面直徑為8米,在其南面有一條東西走向的觀景直道,建筑物的東西兩側(cè)有與觀景直道平行的兩段輔道,觀景直道與輔道距離10米.在建筑物底面中心O的東北方向米的點A處,有一全景攝像頭,其安裝高度低于建筑物的高度(1)在西輔道上距離建筑物1米處的游客,是否在該攝像頭的監(jiān)控范圍內(nèi)?(2)求觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度21.(12分)設(shè),分別是橢圓:的左、右焦點,的離心率為,點是上一點.(1)求橢圓的方程;(2)過點的直線交橢圓E于A,B兩點,且,求直線的方程.22.(10分)已知函數(shù)(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分別取、、的中點、、,連接、、、、,由題意結(jié)合平面幾何的知識可得、、或其補角即為異面直線PC與AB所成角,再由余弦定理即可得解.【詳解】分別取、、的中點、、,連接、、、、,如圖:由可得,所以,在,,可得由中位線的性質(zhì)可得且,且,所以或其補角即為異面直線PC與AB所成角,在中,,所以異面直線AB與PC所成角的余弦值為.故選:A.【點睛】思路點睛:平移線段法是求異面直線所成角的常用方法,其基本思路是通過平移直線,把異面直線的問題化歸為共面直線問題來解決,具體步驟如下:(1)平移:平移異面直線中的一條或兩條,作出異面直線所成的角;(2)認(rèn)定:證明作出的角就是所求異面直線所成的角;(3)計算:求該角的值,常利用解三角形;(4)取舍:由異面直線所成的角的取值范圍是,當(dāng)所作的角為鈍角時,應(yīng)取它的補角作為兩條異面直線所成的角2、D【解析】根據(jù)線線、線面、面面的平行與垂直的位置關(guān)系即可判斷.【詳解】解:對于選項A:若,則與可能平行,可能相交,可能異面,故選項A錯誤;對于選項B:若,則,故選項B錯誤;對于選項C:當(dāng)時不滿足,故選項C錯誤;綜上,可知選項D正確.故選:D.3、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關(guān)系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D4、A【解析】要使函數(shù)有三個解,則與圖象有三個交點,數(shù)形結(jié)合即可求解.【詳解】要使函數(shù)有三個解,則與圖象有三個交點,因為當(dāng)時,,所以,可得在上遞減,在遞增,所以,有最小值,且時,,當(dāng)趨向于負(fù)無窮時,趨向于0,但始終小于0,當(dāng)時,單調(diào)遞減,由圖像可知:所以要使函數(shù)有三個零點,則.故選:A5、B【解析】由直線方程的性質(zhì)依次判斷各命題即可得出結(jié)果.【詳解】對于①,直線,令,則,直線在軸上的截距為-,則①錯誤;對于②,直線的斜率為,傾斜角為,則②正確;對于③直線,由點斜式方程可知直線必過定點,則③正確;對于④,兩條平行直線與間的距離為,則④錯誤.故選:B.6、C【解析】以為建立平面直角坐標(biāo)系,設(shè),把向量的數(shù)量積用坐標(biāo)表示后可得最小值【詳解】如圖,以為建立平面直角坐標(biāo)系,則,設(shè),,,,,∴,∴當(dāng)時,取得最小值故選:C【點睛】本題考查向量的數(shù)量積,解題方法是建立平面直角坐標(biāo)系,把向量的數(shù)量積轉(zhuǎn)化為坐標(biāo)表示7、A【解析】方程化為圓錐曲線(橢圓與雙曲線)標(biāo)準(zhǔn)方程的形式,然后由方程表示雙曲線可得不等關(guān)系【詳解】解:方程可化為,它表示雙曲線,則,解得.故選:A8、B【解析】計算出抽樣比可得答案.【詳解】該校高中學(xué)生共有名,所以高二年級抽取的人數(shù)名.故選:B.9、D【解析】對選項A,令即可檢驗;對選項B,令即可檢驗;對選項C,令即可檢驗;對選項D,設(shè)出等差數(shù)列的首項和公比,然后作差即可.【詳解】若,則可得:,故選項A錯誤;若,則可得:,故選項B錯誤;若,則可得:,故選項C錯誤;不妨設(shè)的首項為,公差為,則有:則有:,故選項D正確故選:D10、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數(shù)學(xué)文化為背景,導(dǎo)數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.11、C【解析】利用逆否命題、命題的否定、充分必要性的概念逐一判斷即可.【詳解】對于A,“若,則”的逆否命題是“若,則”,正確;對于B,“”的否定是”,正確;對于C,“”等價于“或,∴“是"”的充分不必要條件,錯誤;對于D,“或是"”的充要條件,正確.故選:C12、B【解析】采用逐一驗證法,根據(jù)總體,個體,樣本的概念,可得結(jié)果.【詳解】據(jù)題意:總體是1100名同學(xué)的總成績,故A正確個體是每名同學(xué)的總成績,故B錯樣本是50名同學(xué)的總成績,故C正確樣本容量是:50,故D正確故選:B【點睛】本題考查總體,個體,樣本的概念,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由可得,再結(jié)合橢圓的性質(zhì)可得為直角三角形,由題意設(shè),則,由勾股定理可得,再結(jié)合橢圓的定義可求出離心率【詳解】因為,所以,所以,因為,所以,所以為直角三角形,即,所以設(shè),則,所以,得,因為則,所以,所以,即離心率為,故答案為:14、【解析】畫出示意圖,根據(jù)圖形分析可知點在陰影部分所對的劣弧上,由幾何概型可求出.【詳解】作出示意圖曲線是圓心為原點,半徑為2的一個半圓.圓心到直線距離,而點到直線的距離為,故若點到直線的距離不大于,則點在陰影部分所對的劣弧上,由幾何概型的概率計算公式知,所求概率為.故答案為:.【點睛】本題考查幾何概型的概率計算,屬于中檔題.15、4【解析】根據(jù)分別是平面的法向量,且,則有求解.【詳解】因為分別是平面的法向量,且所以所以解得故答案為:4【點睛】本題主要考查空間向量垂直,還考查了運算求解的能力,屬于基礎(chǔ)題.16、2【解析】由已知可用表示,代入所求式子后,結(jié)合二次函數(shù)的性質(zhì)可求【詳解】解:由題意得,即,所以,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)時,上式取得最小值4,故的最小值2故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)以三棱錐等體積法求點到面距離,思路簡單快捷.(2)由直線DE與平面APQ所成角的正弦值為,可以列關(guān)于的方程,解之即可.【小問1詳解】點О是正四棱錐底面中心,點О是BD的中點,四邊形PQDO矩形,,兩點到平面APQ的距離相等.正四棱錐中,平面,平面,,,設(shè)點B到平面APQ的距離為d,則,即解之得,即點B到平面APQ的距離為【小問2詳解】取PC中點N,連接BN、ON、DN,則.平面平面正四棱錐中,,直線平面平面,平面平面,平面平面平面中,點E到直線ON的距離即為點E到平面的距離.中,,點P到直線ON的距離為△中,,設(shè)點E到平面的距離為d,則有,則則有,整理得,解之得或18、(1)80m;(2).【解析】(1)根據(jù)斜率的公式,結(jié)合解方程組法和兩點間距離公式進行求解即可;(2)根據(jù)圓的切線性質(zhì)進行求解即可.【小問1詳解】由題意,可知,,∵∴直線BC方程:①,同理可得:直線AB方程:②由①②可知,∴,從而得故新橋BC得長度為80m【小問2詳解】設(shè),則,圓心,∵直線BC與圓M相切,∴半徑,又因為,∵∴,所以當(dāng)時,圓M的面積達(dá)到最小19、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問1詳解】解:因為平面,四邊形為矩形,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè),則、、、、、,,,,,所以,,,所以,,,又因為,因此,平面.所以,平面的一個法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問2詳解】解:若,則、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.20、(1)不在(2)17.5米【解析】(1)以O(shè)為原點,正東方向為x軸正方向建立如圖所示的直角坐標(biāo)系,求出直線AB方程,判斷直線AB與圓O的位置關(guān)系即可;(2)攝像頭監(jiān)控不會被建筑物遮擋,只需求出過點A的直線l與圓O相切時的直線方程即可.【小問1詳解】以O(shè)為原點,正東方向為x軸正方向建立如圖所示的直角坐標(biāo)系則,觀景直道所在直線的方程為依題意得:游客所在點為則直線AB的方程為,化簡得,所以圓心O到直線AB的距離,故直線AB與圓O相交,所以游客不在該攝像頭監(jiān)控范圍內(nèi).【小問2詳解】由圖易知:過點A的直線l與圓O相切或相離時,攝像頭監(jiān)控不會被建筑物遮擋,所以設(shè)直線l過A且恰與圓O相切,①若直線l垂直于x軸,則l不可能與圓O相切;②若直線l不垂直于x軸,設(shè),整理得所以圓心O到直線l的距離為,解得或,所以直線l的方程為或,即或,設(shè)這兩條直線與交于D,E由,解得,由,解得,所以,觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度為17.5米.21、(1)(2)或【解析】(1)按照所給的條件帶入橢圓方程以及e的定義即可;(2)聯(lián)立直線與橢圓方程,表達(dá)出,解方程即可.【小問1詳解】由題意知,,且,解得,,所以橢圓的方程為.【小問2詳解】由題意知,直線的斜率

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論