版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆山東省德州市陵城一中數(shù)學(xué)高一上期末統(tǒng)考試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)函數(shù)與的圖象的交點(diǎn)為,,則所在的區(qū)間是A. B.C. D.2.已知角是第四象限角,且滿足,則()A. B.C. D.3.已知集合,,則等于()A. B.C. D.4.已知,則的值為()A.-4 B.4C.-8 D.85.函數(shù),的最小值是()A. B.C. D.6.為了得到函數(shù)的圖象,只需要把函數(shù)的圖象上所有的點(diǎn)①向左平移個(gè)單位,再把所有各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍;②向左平移個(gè)單位,再把所有各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍;③各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,再向左平移個(gè)單位:④各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,再向左平移個(gè)單位其中命題正確的為()A.①③ B.①④C.②③ D.②④7.設(shè)函數(shù),若恰有2個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.8.我國(guó)古代《九章算術(shù)》里,記載了一個(gè)“商功”的例子:今有芻童,下廣二丈,袤三丈,上廣三丈,袤四丈,高三丈.問(wèn)積幾何?其意思是:今有上下底面皆為長(zhǎng)方形的草垛(如圖所示),下底寬2丈,長(zhǎng)3丈;上底寬3丈,長(zhǎng)4丈;高3丈.問(wèn)它的體積是多少?該書提供的算法是:上底長(zhǎng)的2倍與下底長(zhǎng)的和與上底寬相乘,同樣下底長(zhǎng)的2倍與上底長(zhǎng)的和與下底寬相乘,將兩次運(yùn)算結(jié)果相加,再乘以高,最后除以6.則這個(gè)問(wèn)題中的芻童的體積為A.13.25立方丈 B.26.5立方丈C.53立方丈 D.106立方丈9.關(guān)于的方程的所有實(shí)數(shù)解的和為A.2 B.4C.6 D.810.命題:,的否定是()A., B.,C., D.,二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)y=f(x)是函數(shù)y=2x的反函數(shù),則f(2)=______.12.已知一個(gè)扇形的面積為,半徑為,則它的圓心角為_(kāi)_____弧度13.已知為的外心,,,,且;當(dāng)時(shí),______;當(dāng)時(shí),_______.14.當(dāng)時(shí),函數(shù)的最大值為_(kāi)_______.15.圓的半徑是6cm,則圓心角為30°的扇形面積是_________16.設(shè)函數(shù),若互不相等的實(shí)數(shù)、、滿足,則的取值范圍是_________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)時(shí)(尾/立方米)時(shí),的值為2(千克/年);當(dāng)時(shí),是的一次函數(shù);當(dāng)(尾/立方米)時(shí),因缺氧等原因,的值為0(千克/年).(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;(2)當(dāng)為多大時(shí),魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.18.已知(1)求函數(shù)的單調(diào)遞增區(qū)間與對(duì)稱軸方程;(2)當(dāng)時(shí),求的最大值與最小值19.已知函數(shù)(且).(1)當(dāng)時(shí),,求的取值范圍;(2)若在上最小值大于1,求的取值范圍.20.已知函數(shù),,(1)求的值;(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求在區(qū)間上的最大值和最小值21.已知函數(shù)f(x)=2sin2(x+)-2cos(x-)-5a+2(1)設(shè)t=sinx+cosx,將函數(shù)f(x)表示為關(guān)于t的函數(shù)g(t),求g(t)的解析式;(2)對(duì)任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】設(shè),則,有零點(diǎn)的判斷定理可得函數(shù)的零點(diǎn)在區(qū)間內(nèi),即所在的區(qū)間是.選A2、A【解析】直接利用三角函數(shù)的誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可【詳解】由,得,即,∵角是第四象限角,∴,∴故選:A3、A【解析】先解不等式,再由交集的定義求解即可【詳解】由題,因?yàn)?所以,即,所以,故選:A【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查利用指數(shù)函數(shù)單調(diào)性解不等式4、C【解析】由已知條件,結(jié)合同角正余弦的三角關(guān)系可得,再將目標(biāo)式由切化弦即可求值.【詳解】由題意知:,即,∴,而.故選:C.【點(diǎn)睛】本題考查了同角三角函數(shù)關(guān)系,應(yīng)用了以及切弦互化求值,屬于基礎(chǔ)題.5、D【解析】利用基本不等式可求得的最小值.【詳解】,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,故函數(shù)的最小值為.故選:D.6、B【解析】利用三角函數(shù)圖象變換可得出結(jié)論.【詳解】因?yàn)椋?,為了得到函?shù)的圖象,只需要把函數(shù)的圖象上所有的點(diǎn)向左平移個(gè)單位,再把所有各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,或?qū)⒑瘮?shù)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,再向左平移個(gè)單位.故①④滿足條件,故選:B.7、B【解析】當(dāng)時(shí),在上單調(diào)遞增,,當(dāng)時(shí),令得或(1)若,即時(shí),在上無(wú)零點(diǎn),此時(shí),∴在[1,+∞)上有兩個(gè)零點(diǎn),符合題意;(2)若,即時(shí),在(?∞,1)上有1個(gè)零點(diǎn),∴在上只有1個(gè)零點(diǎn),①若,則,∴,解得,②若,則,∴在上無(wú)零點(diǎn),不符合題意;③若,則,∴在上無(wú)零點(diǎn),不符合題意;綜上a的取值范圍是.選B點(diǎn)睛:解答本題的關(guān)鍵是對(duì)實(shí)數(shù)a進(jìn)行分類討論,根據(jù)a的不同取值先判斷函數(shù)在(?∞,1)上的零點(diǎn)個(gè)數(shù),在此基礎(chǔ)上再判斷函數(shù)在上的零點(diǎn)個(gè)數(shù),看是否滿足有兩個(gè)零點(diǎn)即可8、B【解析】根據(jù)題目給出的體積計(jì)算方法,將幾何體已知數(shù)據(jù)代入計(jì)算,求得幾何體體積【詳解】由題,芻童的體積為立方丈【點(diǎn)睛】本題考查幾何體體積的計(jì)算,正確利用題目條件,弄清楚問(wèn)題本質(zhì)是關(guān)鍵9、B【解析】本道題先構(gòu)造函數(shù),然后通過(guò)平移得到函數(shù),結(jié)合圖像,計(jì)算,即可【詳解】先繪制出,分析該函數(shù)為偶函數(shù),而相當(dāng)于往右平移一個(gè)單位,得到函數(shù)圖像為:發(fā)現(xiàn)交點(diǎn)A,B,C,D關(guān)于對(duì)稱,故,故所有實(shí)數(shù)解的和為4,故選B【點(diǎn)睛】本道題考查了函數(shù)奇偶性判定法則和數(shù)形結(jié)合思想,繪制函數(shù)圖像,即可10、D【解析】由全稱量詞命題與存在量詞命題的否定判斷即可.【詳解】由全稱量詞命題與存在量詞命題的否定,可知原命題的否定為,故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】根據(jù)反函數(shù)的定義即可求解.【詳解】由題知y=f(x)=,∴f(2)=1.故答案為:1.12、##【解析】利用扇形的面積公式列方程即可求解.【詳解】設(shè)扇形的圓心角為,扇形的面積即,解得,所以扇形的圓心角為弧度,故答案為:.13、(1).(2).【解析】(1)由可得出為的中點(diǎn),可知為外接圓的直徑,利用銳角三角函數(shù)的定義可求出;(2)推導(dǎo)出外心的數(shù)量積性質(zhì),,由題意得出關(guān)于、和的方程組,求出的值,再利用向量夾角的余弦公式可求出的值.【詳解】當(dāng)時(shí),由可得,,所以,為外接圓的直徑,則,此時(shí);如下圖所示:取的中點(diǎn),連接,則,所,,同理可得.所以,,整理得,解得,,,因此,.故答案為:;.【點(diǎn)睛】本題考查三角的外心的向量數(shù)量積性質(zhì)的應(yīng)用,解題的關(guān)鍵就是推導(dǎo)出,,并以此建立方程組求解,計(jì)算量大,屬于難題.14、【解析】分子分母同除以,再利用基本不等式求解即可.【詳解】,,當(dāng)且僅當(dāng)時(shí)取等號(hào),即函數(shù)的最大值為,故答案為:.15、3π【解析】根據(jù)扇形的面積公式即可計(jì)算.【詳解】,.故答案為:3π.16、【解析】作出函數(shù)的圖象,設(shè),求出的取值范圍以及的值,由此可求得的取值范圍.【詳解】作出函數(shù)的圖象,設(shè),如下圖所示:二次函數(shù)的圖象關(guān)于直線對(duì)稱,則,由圖可得,可得,解得,所以,.故答案為:.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查零點(diǎn)有關(guān)代數(shù)式的取值范圍的求解,解題的關(guān)鍵在于利用利用圖象結(jié)合對(duì)稱性以及對(duì)數(shù)運(yùn)算得出零點(diǎn)相關(guān)的等式與不等式,進(jìn)而求解.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2),魚的年生長(zhǎng)量可以達(dá)到最大值12.5【解析】(1)根據(jù)題意得建立分段函數(shù)模型求解即可;(2)根據(jù)題意,結(jié)合(1)建立一元二次函數(shù)模型求解即可.【小問(wèn)1詳解】解:(1)依題意,當(dāng)時(shí),當(dāng)時(shí),是的一次函數(shù),假設(shè)且,,代入得:,解得.所以【小問(wèn)2詳解】解:當(dāng)時(shí),,當(dāng)時(shí),所以當(dāng)時(shí),取得最大值因?yàn)樗詴r(shí),魚的年生長(zhǎng)量可以達(dá)到最大值12.5.18、(1)單調(diào)遞增區(qū)間為,k∈Z.對(duì)稱軸方程為,其中k∈Z(2)f(x)的最大值為2,最小值為–1【解析】(1)因?yàn)椋?,求得,k∈Z,可得函數(shù)f(x)的單調(diào)遞增區(qū)間為,k∈Z由,求得,k∈Z故f(x)的對(duì)稱軸方程為,其中k∈Z(2)因?yàn)?,所以,故有,故?dāng)即x=0時(shí),f(x)的最小值為–1,當(dāng)即時(shí),f(x)的最大值為219、(1).(2).【解析】(1)當(dāng)時(shí),得到函數(shù)的解析式,把不等式,轉(zhuǎn)化為,即可求解;(2)由在定義域內(nèi)單調(diào)遞減,分類討論,即可求解函數(shù)的最大值,得到答案.【詳解】(1)當(dāng)時(shí),,,得.(2)在定義域內(nèi)單調(diào)遞減,當(dāng)時(shí),函數(shù)在上單調(diào)遞減,,得.當(dāng)時(shí),函數(shù)在上單調(diào)遞增,,不成立.綜上:.【點(diǎn)睛】本題主要考查了指數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,其中解答中由指數(shù)函數(shù)的解析式轉(zhuǎn)化為相應(yīng)的不等式,以及根據(jù)指數(shù)函數(shù)的單調(diào)性分類討論求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.20、(1)1;(2)(3)最大值為2,最小值為-1.【解析】(1)直接利用函數(shù)的關(guān)系式求出函數(shù)的值;(2)利用整體代換發(fā)即可求出函數(shù)的單調(diào)增區(qū)間;(3)結(jié)合(2),利用函數(shù)的定義域求出函數(shù)的單調(diào)性,進(jìn)而即可求出函數(shù)的最大、小值.【小問(wèn)1詳解】由,得;【小問(wèn)2詳解】令,整理,得,故函數(shù)的單調(diào)遞增區(qū)間為;【小問(wèn)3詳解】由,得,結(jié)合(2)可知,函數(shù)的單調(diào)遞增區(qū)間為,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,故當(dāng)時(shí),函數(shù)取得最小值,且最小值為,當(dāng)時(shí),函數(shù)取得最大值,且最大值為.21、(1),;(2)【解析】:(1)首先由兩角和的正弦公式可得,進(jìn)而即可求出的取值范圍;接下來(lái)對(duì)已知的函數(shù)利用進(jìn)行表示;對(duì)于
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46849.3-2025技術(shù)產(chǎn)品文件基于模型定義要求第3部分:設(shè)計(jì)數(shù)據(jù)
- 聯(lián)塑車間衛(wèi)生管理制度
- 缺乏環(huán)境衛(wèi)生管理制度
- 技校宿舍衛(wèi)生管理制度
- 食品職業(yè)衛(wèi)生規(guī)章制度
- 旅店衛(wèi)生管理組織及制度
- 噴房衛(wèi)生清理制度及流程
- 社區(qū)衛(wèi)生考評(píng)評(píng)比制度
- 2026年食品安全管理與保障制度考核題目集
- 汽車站衛(wèi)生制度管理制度
- 對(duì)外話語(yǔ)體系構(gòu)建的敘事話語(yǔ)建構(gòu)課題申報(bào)書
- 江蘇交控集團(tuán)招聘筆試題
- 2026屆浙江省寧波市九校數(shù)學(xué)高一上期末監(jiān)測(cè)試題含解析
- 馬年猜猜樂(lè)(馬的成語(yǔ))打印版
- 2025-2030中國(guó)低壓變頻器行業(yè)營(yíng)銷渠道及投融資方式分析研究報(bào)告
- 2025山東恒豐銀行濟(jì)南分行社會(huì)招聘1人筆試歷年典型考題及考點(diǎn)剖析附帶答案詳解
- 渠道管理制度規(guī)范
- 2025年企業(yè)安全生產(chǎn)培訓(xùn)講義
- 精神障礙防治責(zé)任承諾書(3篇)
- GB/T 714-2025橋梁用結(jié)構(gòu)鋼
- 心臟瓣膜置換術(shù)護(hù)理查房
評(píng)論
0/150
提交評(píng)論