版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆山東菏澤一中數(shù)學(xué)高二上期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線與直線垂直,則()A6 B.4C. D.2.設(shè)數(shù)列的前項(xiàng)和為,若,,,則、、、中,最大的是()A. B.C. D.3.已知拋物線上的點(diǎn)到其準(zhǔn)線的距離為,則()A. B.C. D.4.已知雙曲線,則該雙曲線的實(shí)軸長為()A.1 B.2C. D.5.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象大致形狀為()A. B.C. D.6.兩個(gè)圓和的位置是關(guān)系是()A.相離 B.外切C.相交 D.內(nèi)含7.已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則拋物線的準(zhǔn)線方程為()A. B.C. D.8.將函數(shù)圖象上所有點(diǎn)橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再將所得圖象向右平移個(gè)單位長度,得到函數(shù)的圖象,則()A. B.C. D.9.如圖在中,,,在內(nèi)作射線與邊交于點(diǎn),則使得的概率是()A. B.C. D.10.阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德并稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他對圓錐曲線有深刻而系統(tǒng)的研究,主要研究成果集中在他的代表作《圓錐曲線》一書,阿波羅尼斯圓就是他的研究成果之一.指的是:已知?jiǎng)狱c(diǎn)與兩定點(diǎn)的距離之比,那么點(diǎn)的軌跡就是阿波羅尼斯圓.已知?jiǎng)狱c(diǎn)的軌跡是阿波羅尼斯圓,其方程為,其中,定點(diǎn)為軸上一點(diǎn),定點(diǎn)的坐標(biāo)為,若點(diǎn),則的最小值為()A. B.C. D.11.設(shè)分別是橢圓的左、右焦點(diǎn),P是C上的點(diǎn),則的周長為()A.13 B.16C.20 D.12.已知直線l與圓交于A,B兩點(diǎn),點(diǎn)滿足,若AB的中點(diǎn)為M,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列,點(diǎn)在函數(shù)的圖象上,則數(shù)列的前10項(xiàng)和是______14.底面半徑為1,母線長為2的圓錐的體積為______15.已知直線與圓交于,兩點(diǎn),則的最小值為___________.16.已知橢圓,分別是橢圓的上、下頂點(diǎn),是左頂點(diǎn),為左焦點(diǎn),直線與相交于點(diǎn),則________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,,且成等比數(shù)列(1)求的值和的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和18.(12分)設(shè)函數(shù),且存在兩個(gè)極值點(diǎn)、,其中.(1)求實(shí)數(shù)的取值范圍;(2)若恒成立,求最小值.19.(12分)函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.20.(12分)給定函數(shù).(1)判斷函數(shù)f(x)的單調(diào)性,并求出f(x)的極值;(2)畫出函數(shù)f(x)的大致圖象,無須說明理由(要求:坐標(biāo)系中要標(biāo)出關(guān)鍵點(diǎn));(3)求出方程的解的個(gè)數(shù).21.(12分)圓心在軸正半軸上、半徑為2的圓與直線相交于兩點(diǎn)且.(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線,圓上僅有一個(gè)點(diǎn)到直線的距離為1,求直線的方程.22.(10分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大小;(2)若,求△的面積S的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由兩條直線垂直的條件可得答案.【詳解】由題意可知,即故選:A.2、C【解析】求出的表達(dá)式,解不等式可得結(jié)果.【詳解】由已知可得,故數(shù)列為等差數(shù)列,且公差為,所以,,令可得.因此,當(dāng)時(shí),最大.故選:C.3、C【解析】首先根據(jù)拋物線的標(biāo)準(zhǔn)方程的形式,確定的值,再根據(jù)焦半徑公式求解.【詳解】,,因?yàn)辄c(diǎn)到的準(zhǔn)線的距離為,所以,得故選:C4、B【解析】根據(jù)給定的雙曲線方程直接計(jì)算即可作答.【詳解】雙曲線的實(shí)半軸長,所以該雙曲線的實(shí)軸長為2.故選:B5、A【解析】利用f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,結(jié)合導(dǎo)數(shù)的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數(shù)f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,由導(dǎo)數(shù)的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項(xiàng)A.故選:A.6、C【解析】根據(jù)圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關(guān)系,可得選項(xiàng).【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關(guān)系是相交,故選:C.【點(diǎn)睛】本題考查兩圓的位置關(guān)系,關(guān)鍵在于運(yùn)用判定兩圓的位置關(guān)系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關(guān)系,屬于基礎(chǔ)題.7、C【解析】先求出橢圓的右焦點(diǎn),從而可求拋物線的準(zhǔn)線方程.【詳解】,橢圓右焦點(diǎn)坐標(biāo)為,故拋物線的準(zhǔn)線方程為,故選:C.【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),一般地,如果拋物線的方程為,則拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為,本題屬于基礎(chǔ)題.8、A【解析】根據(jù)三角函數(shù)圖象的變換,由逆向變換即可求解.【詳解】由已知的函數(shù)逆向變換,第一步,向左平移個(gè)單位長度,得到的圖象;第二步,圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到的圖象,即的圖象.故.故選:A9、C【解析】由題意可得,根據(jù)三角形中“大邊對大角,小邊對小角”的性質(zhì),將轉(zhuǎn)化為求的概率,又因?yàn)?,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因?yàn)?,,則的概率是故選:C【點(diǎn)睛】本題考查幾何概型及其計(jì)算方法的知識,屬于基礎(chǔ)題10、D【解析】設(shè),,根據(jù)和求出a的值,由,兩點(diǎn)之間直線最短,可得的最小值為,根據(jù)坐標(biāo)求出即可.【詳解】設(shè),,所以,由,所以,因?yàn)榍?,所以,整理可得,又?dòng)點(diǎn)M的軌跡是,所以,解得,所以,又,所以,因?yàn)?,所以的最小值,?dāng)M在位置或時(shí)等號成立.故選:D11、B【解析】利用橢圓的定義及即可得到答案.【詳解】由橢圓的定義,,焦距,所以的周長為.故選:B12、A【解析】設(shè),,則、,由點(diǎn)在圓上可得,再由向量垂直的坐標(biāo)表示可得,進(jìn)而可得M的軌跡為圓,即可求的最大值.【詳解】設(shè),中點(diǎn),則,,又,,則,所以,又,則,而,,所以,即,綜上,,整理得,即為M的軌跡方程,所以在圓心為,半徑為的圓上,則.故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由點(diǎn)圓位置、中點(diǎn)坐標(biāo)公式及向量垂直的坐標(biāo)表示得到關(guān)于的軌跡方程.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將點(diǎn)代入可得,從而得,再由裂項(xiàng)相消法可求解.【詳解】由題意有,所以,所以數(shù)列的前10項(xiàng)和為:.故答案為:14、【解析】先由勾股定理求圓錐的高,再結(jié)合圓錐的體積公式運(yùn)算即可得解.【詳解】解:設(shè)圓錐的高為,由勾股定理可得,由圓錐的體積可得,故答案為.【點(diǎn)睛】本題考查了圓錐的體積公式,重點(diǎn)考查了勾股定理,屬基礎(chǔ)題.15、【解析】先求出直線經(jīng)過的定點(diǎn),再求出圓心到定點(diǎn)的距離,數(shù)形結(jié)合即得解.【詳解】由題得,所以直線經(jīng)過定點(diǎn),圓的圓心為,半徑為.圓心到定點(diǎn)的距離為,當(dāng)時(shí),取得最小值,且最小值為.故答案為:816、##【解析】先求出頂點(diǎn)和焦點(diǎn)坐標(biāo),求出直線直線與的斜率,利用到角公式求出的正切值,進(jìn)而求出正弦值.【詳解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;(2)【解析】(1)由于,所以可得,再由成等比數(shù)列,列方程可求出,從而可求出的通項(xiàng)公式;(2)由(1)可得,然后利用錯(cuò)位相減法求【詳解】解:(1)數(shù)列{an}滿足,所以,所以a2+a3=a1+a2+d,由于a1=1,a2=1,所以a2+a3=2+d,a8+a9=2+7d,且a1,a2+a3,a8+a9成等比數(shù)列,所以,整理得d=1或2(1舍去)故an+2=an+2,所以n奇數(shù)時(shí),an=n,n為偶數(shù)時(shí),an=n﹣1所以數(shù)列{an}的通項(xiàng)公式為(2)由于,所以所以T2n=b1+b2+...+b2n=﹣20×12+20×22﹣22×32+22×42+...+[﹣22n﹣2?(2n﹣1)2]+22n﹣2?(2n)2,=20×(22﹣12)+22×(42﹣32)+...+22n﹣2?[(2n)2﹣(2n﹣1)2]=20×3+22×7+...+22n﹣2?(4n﹣1)①,所以,②,①﹣②得:﹣3T2n=20×3+22×4+...+22n﹣2×4﹣22n×(4n﹣1),=3+4×﹣22n×(4n﹣1),=,所以18、(1)(2)【解析】(1)存在兩個(gè)極值點(diǎn),等價(jià)于其導(dǎo)函數(shù)有兩個(gè)相異零點(diǎn);(2)適當(dāng)構(gòu)造函數(shù),并注意與關(guān)系,轉(zhuǎn)化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個(gè)極值點(diǎn)、,且,關(guān)于的方程,即在內(nèi)有兩個(gè)不等實(shí)根,令,,即,,實(shí)數(shù)的取值范圍是.【小問2詳解】函數(shù)在上有兩個(gè)極值點(diǎn),由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設(shè),則,,,即在上是減函數(shù),(1),,在上是增函數(shù),(1),,恒成立,恒成立,,的最小值為.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查導(dǎo)函數(shù),函數(shù)的單調(diào)性,最值,不等式證明,考查學(xué)生分析解決問題的能力,解題的關(guān)鍵是將恒成立,轉(zhuǎn)化為恒成立,化簡,令,則化為,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求出其最大值即可,屬于較難題19、(1)答案見解析;(2).【解析】(1)求出函數(shù)的定義域?yàn)?,求得,分、、三種情況討論,分析導(dǎo)數(shù)的符號變化,由此可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)構(gòu)造函數(shù),由題意可知恒成立,對實(shí)數(shù)分和兩種情況討論,利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,驗(yàn)證是否成立,由此可得出實(shí)數(shù)的取值范圍.【詳解】(1)函數(shù)的定義域?yàn)椋?(i)當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;(ii)當(dāng)時(shí),令得.若,則;若,則.①當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;②當(dāng)時(shí),,當(dāng)時(shí),,函數(shù)單調(diào)遞增;當(dāng)時(shí),,函數(shù)單調(diào)遞減;綜上,可得,當(dāng)時(shí),函數(shù)在上單調(diào)遞增;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2)設(shè),,則.當(dāng)時(shí),單調(diào)遞增,則.所以,函數(shù)在上單調(diào)遞增,且.當(dāng)時(shí),,于是,函數(shù)在上單調(diào)遞增,恒成立,符合題意;當(dāng)時(shí),由于,,,所以,存在,使得.當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增.故,不符合題意,綜上所述,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用導(dǎo)數(shù)研究函數(shù)不等式恒成立問題,考查分類討論思想的應(yīng)用,屬于難題.20、(1)函數(shù)的減區(qū)間為,增區(qū)間為,有極小值,無極大值;(2)具體見解析;(3)具體見解析.【解析】(1)對函數(shù)求導(dǎo),進(jìn)而求出單調(diào)區(qū)間和極值;(2)結(jié)合(1),并代入幾個(gè)特殊點(diǎn),再結(jié)合函數(shù)的變化趨勢作出圖象;(3)結(jié)合(2),采用數(shù)形結(jié)合的方法求得答案.【小問1詳解】,時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,故函數(shù)在x=-1處取得極小值為,無極大值.【小問2詳解】作圖說明:由(1)可知函數(shù)先減后增,有極小值;描出極小值點(diǎn),原點(diǎn)和點(diǎn)(1,e);當(dāng)時(shí),函數(shù)增加得越來越快,當(dāng)時(shí),函數(shù)越來越接近于0.【小問3詳解】結(jié)合圖象可知,若,則方程有0個(gè)解;若,則方程有2個(gè)解;若或,則方程有1個(gè)解.21、(1);(2)或.【解析】(1)根據(jù)圓的弦長公式進(jìn)行求解即可;(2)根據(jù)平行線的性質(zhì),結(jié)合直線與圓的位置關(guān)系進(jìn)行求解即可.小問1詳解】因?yàn)閳A的圓心在軸正半軸上、半徑為2,所以設(shè)方程為:,圓心,設(shè)圓心到直線的距離為,因?yàn)?,所以有,或舍去,所以圓的標(biāo)準(zhǔn)方程為;【小問2詳解】由(1)可知:,圓的半徑為,因?yàn)橹本€,所以設(shè)直線的方程為,因?yàn)閳A上僅有一個(gè)點(diǎn)到直線的距離為1,所以直線與該圓相離,當(dāng)兩平行線間的距離為,于是有:,當(dāng)時(shí),圓心到直線的距離為:,符合題意;當(dāng)時(shí),圓心到直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)技術(shù)人員考試題及答案
- 麻醉生理學(xué)復(fù)習(xí)題(含答案)
- 科創(chuàng)板測試題標(biāo)準(zhǔn)答案
- 排水管道養(yǎng)護(hù)試題及答案
- 嘉興市秀洲區(qū)教師職稱考試(理論知識)在線模擬題庫及答案
- 市消防設(shè)施操作員消防設(shè)備高級技能考試題庫帶答案(基礎(chǔ)題)
- 2025年中級銀行從業(yè)資格之中級風(fēng)險(xiǎn)管理試題一及答案詳解
- 網(wǎng)絡(luò)綜合分析題庫及答案
- 論語知識競賽題及答案
- 包裝工理論考試及答案
- 風(fēng)電場培訓(xùn)安全課件
- 工程質(zhì)量管理復(fù)盤總結(jié)
- (完整版)房屋拆除施工方案
- 供水管道搶修知識培訓(xùn)課件
- 廣東物業(yè)管理辦法
- 業(yè)務(wù)規(guī)劃方案(3篇)
- 大客戶開發(fā)與管理課件
- 上海物業(yè)消防改造方案
- 供應(yīng)商信息安全管理制度
- 2025年農(nóng)業(yè)機(jī)械化智能化技術(shù)在農(nóng)業(yè)防災(zāi)減災(zāi)中的應(yīng)用報(bào)告
- 發(fā)展與安全統(tǒng)籌策略研究
評論
0/150
提交評論