2026屆貴州省六盤水市外國語學(xué)校高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第1頁
2026屆貴州省六盤水市外國語學(xué)校高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第2頁
2026屆貴州省六盤水市外國語學(xué)校高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第3頁
2026屆貴州省六盤水市外國語學(xué)校高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第4頁
2026屆貴州省六盤水市外國語學(xué)校高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆貴州省六盤水市外國語學(xué)校高二數(shù)學(xué)第一學(xué)期期末達標(biāo)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知各項均為正數(shù)的等比數(shù)列滿足,若存在兩項,使得,則的最小值為()A.4 B.C. D.92.在如圖所示的棱長為1的正方體中,點P在側(cè)面所在的平面上運動,則下列四個命題中真命題的個數(shù)是()①若點P總滿足,則動點P的軌跡是一條直線②若點P到點A的距離為,則動點P的軌跡是一個周長為的圓③若點P到直線AB的距離與到點C的距離之和為1,則動點P的軌跡是橢圓④若點P到平面的距離與到直線CD的距離相等,則動點P的軌跡是拋物線A.1 B.2C.3 D.43.記等比數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.274.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.外離5.已知隨機變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.766.設(shè),分別是雙曲線:的左、右焦點,過點作的一條漸近線的垂線,垂足為,,為坐標(biāo)原點,則雙曲線的離心率為()A. B.2C. D.7.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A. B.C D.9.等差數(shù)列的公差,且,,則的通項公式是()A. B.C. D.10.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,第九章“勾股”,講述了“勾股定理”及一些應(yīng)用,直角三角形的兩直角邊與斜邊的長分別稱“勾”“股”“弦”,且“”.設(shè)分別是雙曲線的左、右焦點,直線交雙曲線左、右兩支于兩點,若恰好是的“勾”“股”,則此雙曲線的離心率為()A. B.C.2 D.11.己知F為拋物線的焦點,過F作兩條互相垂直的直線,,直線與C交于A、B兩點,直線與C交于D、E兩點,則的最小值為()A.24 B.22C.20 D.1612.在長方體中,,,點分別在棱上,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知F1,F(xiàn)2是雙曲線C:﹣y2=1(a>0)的左、右焦點,點P是雙曲線C上的任意一點(不是頂點),過F1作∠F1PF2的角平分線的垂線,垂足為H,O是坐標(biāo)原點.若|F1F2|=6|OH|,則雙曲線C的方程為____14.已知是橢圓的左、右焦點,在橢圓上運動,當(dāng)?shù)闹底钚r,的面積為_______15.函數(shù)的圖象在點處的切線方程為______16.拋物線的焦點坐標(biāo)為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的長軸長為,P是橢圓上異于頂點的一個動點,O為坐標(biāo)原點,A為橢圓C的上頂點,Q為PA的中點,且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過上焦點F的直線l與橢圓C相交于M,N兩點,當(dāng)點M,N到y(tǒng)軸距離之和最大時,求直線l的方程.18.(12分)已知中心在坐標(biāo)原點O的橢圓,左右焦點分別為,,離心率為,M,N分別為橢圓的上下頂點,且滿足.(1)求橢圓方程;(2)已知點C滿足,點T在橢圓上(T異于橢圓的頂點),直線NT與以C為圓心的圓相切于點P,若P為線段NT的中點,求直線NT的方程;(3)過橢圓內(nèi)的一點D(0,t),作斜率為k的直線l,與橢圓交于A,B兩點,直線OA,OB的斜率分別是,,若對于任意實數(shù)k,存在實數(shù)m,使得,求實數(shù)m的取值范圍.19.(12分)已知拋物線上一點到拋物線焦點的距離為,點關(guān)于坐標(biāo)原點對稱,過點作軸的垂線,為垂足,直線與拋物線交于兩點.(1)求拋物線的方程;(2)設(shè)直線與軸交點分別為,求的值;(3)若,求.20.(12分)設(shè)關(guān)于x的不等式的解集為A,關(guān)于x的不等式的解集為B(1)求集合A,B;(2)若是的必要不充分條件,求實數(shù)m的取值范圍21.(12分)已知函數(shù)在與處都取得極值.(1)求a,b的值;(2)若對任意,不等式恒成立,求實數(shù)c的取值范圍.22.(10分)已知橢圓的離心率為,點是橢圓E上一點.(1)求E的方程;(2)設(shè)過點的動直線與橢圓E相交于兩點,O為坐標(biāo)原點,求面積的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【詳解】因為各項均為正數(shù)的等比數(shù)列滿足,可得,即解得或(舍去)∵,,∴=當(dāng)且僅當(dāng),即m=2,n=4時,等號成立故的最小值等于.故選:C【點睛】方法點睛:本題主要考查等比數(shù)列的通項公式和基本不等式的應(yīng)用,解題的關(guān)鍵是常量代換的技巧,所謂常量代換,就是把一個常數(shù)用代數(shù)式來代替,如,再把常數(shù)6代換成已知中的m+n,即.常量代換是基本不等式里常用的一個技巧,可以優(yōu)化解題,提高解題效率.2、C【解析】根據(jù)線面關(guān)系、距離關(guān)系可分別對每一個命題判斷.【詳解】若點P總滿足,又,,,可得對角面,因此點P的軌跡是直線,故①正確若點P到點A的距離為,則動點P的軌跡是以點B為圓心,以1為半徑的圓(在平面內(nèi)),因此圓的周長為,故②正確點P到直線AB的距離PB與到點C的距離PC之和為1,又,則動點P的軌跡是線段BC,因此③不正確點P到平面的距離(即到直線的距離)與到直線CD的距離(即到點C的距離)相等,則動點P的軌跡是以線段BC的中點為頂點,直線BC為對稱軸的拋物線(在平面內(nèi)),因此④正確故有①②④三個故選:C3、C【解析】根據(jù)等比數(shù)列的性質(zhì),可知等比數(shù)列的公比,所以成等比數(shù)列,根據(jù)等比的中項性質(zhì)即可求出結(jié)果.【詳解】因為為等比數(shù)列的前項和,且,,易知等比數(shù)列的公比,所以成等比數(shù)列所以,所以,解得.故選:C4、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,根據(jù)圓心距和半徑的關(guān)系,判斷兩圓的位置關(guān)系.【詳解】圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程為,兩圓的圓心距為,即圓心距等于兩圓半徑之和,故兩圓外切,故選:C.5、A【解析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【詳解】因隨機變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A6、D【解析】先求過右焦點且與漸近線垂直的直線方程,與漸近線方程聯(lián)立求點P的坐標(biāo),再用兩點間的距離公式,結(jié)合已知條件,得到關(guān)于a,c的關(guān)系式.【詳解】雙曲線的左右焦點分別為、,一條漸近線方程為,過與這條漸近線垂直的直線方程為,由,得到點P的坐標(biāo)為,又因為,所以,所以,所以.故選:D7、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時,數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.8、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線的距離為,所以面積的最小值為,最大值為.故選:A9、C【解析】由于數(shù)列為等差數(shù)列,所以,再由可得可以看成一元二次方程的兩個根,由可知,所以,從而可求出,可得到通項公式.【詳解】解:因為數(shù)列為等差數(shù)列,所以,因為,所以可以看成一元二次方程的兩個根,因為,所以,所以,解得,所以故選:C【點睛】此題考查的是等差數(shù)列的通項公式和性質(zhì),屬于基礎(chǔ)題.10、A【解析】根據(jù)雙曲線的定義及直角三角形斜邊的中線定理,再結(jié)合雙曲線的離心率公式即可求解.【詳解】如圖所示由題意可知,根據(jù)雙曲線的定義知,是的中點且.在中,是的中點,所以,因為直線的斜率為,所以,所以.所以是等邊三角形,.在中,.由雙曲線的定義,得,所以雙曲線的離心率為.故選:A.11、A【解析】由拋物線的性質(zhì):過焦點的弦長公式計算可得.【詳解】設(shè)直線,的斜率分別為,由拋物線的性質(zhì)可得,,所以,又因為,所以,所以,故選:A.12、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質(zhì)可得,又,所以,因為,所以,所以,因為,所以;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、8x2﹣y2=1【解析】延長F1H與PF2,交于K,連接OH,由三角形的中位線定理和雙曲線的定義、垂直平分線的性質(zhì),結(jié)合雙曲線的a,b,c的關(guān)系,可得雙曲線方程【詳解】解:延長F1H與PF2,交于K,連接OH,由題意可得PH為邊KF1的垂直平分線,則|PF1|=|PK|,且H為KF1的中點,|OH|=|KF2|,由雙曲線的定義可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,則|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又雙曲線C:﹣y2=1,知b=1,所以a=,所以雙曲線的方程為8x2﹣y2=1故答案為:8x2﹣y2=114、【解析】根據(jù)橢圓定義得出,進而對進行化簡,結(jié)合基本不等式得出的最小值,并求出的值,進而求出面積.【詳解】由橢圓定義可知,,所以,,當(dāng)且僅當(dāng),即時取“=”.又,所以.所以,由勾股定理可知:,所以.故答案為:.15、【解析】求出、的值,利用點斜式可得出所求切線的方程.【詳解】因為,則,所以,,,故所求切線方程為,即.故答案為:.16、【解析】化成拋物線的標(biāo)準(zhǔn)方程即可.【詳解】由題意知,,則焦點坐標(biāo)為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)點,求出直線、直線的斜率相乘可得,結(jié)合可得答案;(2)設(shè)直線l的方程為與橢圓方程聯(lián)立,代入得,設(shè),再利用基本不等式可得答案.【小問1詳解】由題意可得,,即,則,設(shè)點,∵Q為的中點,∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問2詳解】由(1)知,設(shè)直線l的方程為,聯(lián)立化簡得,,設(shè),則,易知M,N到y(tǒng)軸的距離之和為,,設(shè),∴,當(dāng)且僅當(dāng)即時等號成立,所以當(dāng)時取得最大值,此時直線l的方程為.18、(1)1(2)或(3)【解析】(1)由已知可得,,再結(jié)合可求出,從而可求得橢圓方程,(2)設(shè)直線,代入橢圓方程中消去,解方程可求出點的坐標(biāo),從而可得NT中點的坐標(biāo),而,可得解方程可求出的值,即可得到直線NT的方程,(3)設(shè)直線,代入橢圓方程中消去,利用根與系數(shù)的關(guān)系結(jié)合直線的斜率公式可得,再由,可求出m的取值范圍【小問1詳解】設(shè)(c,0),M(0,b),N(0,b),①,又②,③,由①②③得,所以橢圓方程為1.【小問2詳解】由題C,0),設(shè)直線聯(lián)立得,那么,N(0,)NT中點.所以,因為直線NT與以C為圓心的圓相切于點P,所以所以所以得,解得或所以直線NT為:或.【小問3詳解】設(shè)直線,聯(lián)立方程得設(shè)A(,),B,),則…由對任意k成立,得點D在橢圓內(nèi),所以,所以,所以m的取值范圍為.19、(1);(2);(3).【解析】(1)運用拋物線的定義進行求解即可;(2)設(shè)出直線的方程,與拋物線的方程聯(lián)立,可求得點和的縱坐標(biāo),結(jié)合直線點斜式方程、兩點間距離公式進行求解即可;(3)利用弦長公式求得,由兩點間距離公式求得和,再解方程即可.【小問1詳解】拋物線的準(zhǔn)線方程為:,因為點到拋物線焦點的距離為,所以有;小問2詳解】由題意知,,,設(shè),則,,,,所以直線的方程為,聯(lián)立,消去得,,解得,設(shè),,,,不妨取,,直線的斜率為,其方程為,令,則,同理可得,所以,而,所以;【小問3詳解】,其中,,,因為,所以,化簡得,解得(舍負),即,所以【點睛】關(guān)鍵點睛:運用拋物線的定義、弦長公式進行求解是解題的關(guān)鍵.20、(1),(2)【解析】(1)直接解不等式即可,(2)由題意可得,從而可得解不等式組可求得答案【小問1詳解】由,得,故由,得,故【小問2詳解】依題意得:,∴解得∴m的取值范圍為21、(1),;(2).【解析】(1)極值點處導(dǎo)數(shù)值為零,據(jù)此即可求出a和b;(2)利用導(dǎo)數(shù)求出f(x)在時的最大值即可.【小問1詳解】由題設(shè),,又,,解得,.【小問2詳解】由(1)得,即,當(dāng)時,,隨的變化情況如下表:1+0-0+遞增極大值遞減極小值遞增∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,∴當(dāng)時,為極大值,又,顯然f(-)<f

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論