機(jī)器學(xué)習(xí)簡介9_第1頁
機(jī)器學(xué)習(xí)簡介9_第2頁
機(jī)器學(xué)習(xí)簡介9_第3頁
機(jī)器學(xué)習(xí)簡介9_第4頁
機(jī)器學(xué)習(xí)簡介9_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Machine Learning:An Overview,石立臣,Outline,What is machine learning (ML) Types of machine learning Work flow Popular models Applications Futures,What is machine learning,Training set (labels known),Test set (labels unknown),f( ) = “apple” f( ) = “tomato” f( ) = “cow”,What is machine learning,Definitio

2、n Machine learning refers to a system capable of the autonomous acquisition and integration of knowledge Machine learning is programming computers to optimize a performance criterion using example data or past experience,Computer,Data,Algorithm,Program,Knowledge,Knowledge (new),What is machine learn

3、ing,Every machine learning algorithm has three components Representation Model (rules, statistics, instance; logic, KNN, SVM, DNN,) Evaluation Performance (accuracy, mse, energy, entropy,) Optimization Parameters Combinatorial optimization Convex optimization Constrained optimization,Types of machin

4、e learning,Supervised learning Training data includes desired outputs Unsupervised learning Training data does not include desired outputs Semi-supervised learning Training data includes a few desired outputs Reinforcement learning Rewards from sequence of actions,Types of machine learning,Supervise

5、d learning Classification: discrete output Regression: continuous output,Bias-variance,Training and Validation Data,Full Data Set,Training Data,Validation Data,Idea: train each model on the “training data” and then test each models accuracy on the validation data,Underfitting & Overfitting,Predictiv

6、e Error,Model Complexity,Error on Training Data,Error on Test Data,Ideal Range for Model Complexity,Overfitting,Underfitting,Types of machine learning,Unsupervised learning Clustering Dimensionality reduction Factor analysis,Types of machine learning,Semi-supervised learning Clustering or classifica

7、tion,Types of machine learning,Reinforcement learning Robot & control,Work flow,Prediction,Training Labels,Training,Training,Image Features,Image Features,Testing,Test Image,Learned model,Learned model,Slide credit: D. Hoiem and L. Lazebnik,Work flow,Features,Work flow,Models Logic, Rules Statistica

8、l, Black box model Static, dynamic model Online learning Ensemble learning,Work flow,Architecture,Model,Feature,Hardware,Popular models,Linear model: logistic regression, linear discriminant analysis, linear regression (with basis function),Popular models,Nearest neighbor Feature & distance,Popular

9、models,Support vector machine,Popular models,Artificial neural network,Popular models,Decision tree,Popular models,Collaborative filtering,Popular models,Hierarchical clustering K-means Spectral clustering Manifold learning,Popular models,Hidden markov model Conditional random fields,Applications,Ap

10、plications,Applications,Applications,Applications,Applications,Applications,Applications,Applications,Attention,Applications,Image classification,Applications,Applications,Brain machine interface,Applications,Applications,Applications,Applications,Applications,Indirect illumination Regression,Applicat

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論