版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Evolutionary Models and Dynamical Properties of Complex Networks,Name: Jianguo Liu University of Shanghai for Science and Technology 2010-3-24,Outline,Complex networks analysis by Citespace Network evolution models Dynamical properties on scale-free networks Personalized recommendation,1999年-2010年發(fā)表
2、的以“complex networks”為主題詞的SCI論文數(shù),Citespace軟件介紹,CiteSpace:由美國(guó)德雷賽爾大學(xué)信息科學(xué)與技術(shù)學(xué)院的陳超美開(kāi)發(fā)。該程序可以登錄到/cchen/citespace后免費(fèi)使用。 利用Citespace尋找某一 學(xué)科領(lǐng)域的研究進(jìn)展和當(dāng) 前的研究前沿,及其對(duì)應(yīng) 的基礎(chǔ)知識(shí)。,復(fù)雜網(wǎng)絡(luò)論文作者合作網(wǎng)(1999-2010),復(fù)雜網(wǎng)絡(luò)研究小組狀況(1999-2010),復(fù)雜網(wǎng)絡(luò)各個(gè)國(guó)家研究狀況(1999-2010),利用引文分析觀察當(dāng)前的研究熱點(diǎn)(1999-2010),Top cited authors(1999-
3、2010),各研究領(lǐng)域之間的關(guān)系(1999-2010),個(gè)性化推薦的知識(shí)圖譜,Top cited authors,目前的研究熱點(diǎn),Outline,Background introduction Network evolution models Dynamical properties on scale-free networks Personalized recommendation,2.Scale-free Network Evolution Models,Multistage random growing small-world networks with power-law degree
4、 distribution Growing scale-free network model with tunable assortative coefficient Self-learning mutual selection model for weighted networks Random evolving networks under the diameter and dverage connectivity constraint,2.1.Multistage random growing small-World networks with power-law degree dist
5、ribution,Liu Jian-Guo, Dang Yan-Zhong and Wang Zhong-Tuo, Chinese Physics Letters 23(3) 746-749 (2006),One node is added in each time step; Select the node u according to the preferential mechanism; Select a neighbor node of node u;,One node is added in each time step; Select the node u according to
6、 the preferential mechanism; Select a neighbor node of node u according to ps;,2.2. Growing scale-free network model with tunable assortative coefficient,Qiang Guo, Tao Zhou, Jian-Guo Liu et al., Physica A 371 814-822 (2006),Two parameters: attractive factor p, the number of candidates m,2.3 Self-le
7、arning mutual selection model for weighted networks,Jian-Guo Liu et al., DCDIS B Supplement, Complex Networks, 14 (S7) 33-36, (2007).,1,2,3,4,1,2,3,4,5,m=2,2.4 Random Evolving Networks Under the Diameter and Average Connectivity Constraint,The growth of random networks under the constraint that the
8、diameter, defined as the average shortest path length between all nodes, and the average connectivity remains approximately constant is studied. We showed that, if the network maintains the form of its degree distribution and the maximal degree is a N-dependent cutoff function, then the degree distr
9、ibution would be approximately power-law with an exponent between 2 and 3.,Jian-Guo Liu et al., Journal of System Science and System Engineering 16(1) 107-112 (2007).,Motivation,In the biological networks, the constant diameter may be related to important properties of these biological networks, suc
10、h as the spread and speed of responses to perturbations. In the Internet backbone network, the average distance is one of the most important factors to measure the efficiency of communication network, and it plays a significant role in measuring the transmission delay. These constraints can be thoug
11、ht of as the environmental pressures, which would select highly efficient structure to convey the packets in it.,Motivation,Construction of the model,The expression for the diameter d of a random network with arbitrary degree distribution was developed Where is the average degree,In order to seek a
12、degree distribution that maintains its distribution and has an approximately constant diameter independent of N. The parameter N can be accomplished by imposing a N-dependent cutoff function,The distribution p(k) can be determined by writing this equation for and Algebraic manipulation yields the re
13、lation,Using an integral approximation , a more explicit formulation can be written as following.,When the numerically calculated degree distributions for various values of,Discussion of part two,We have presented a reason for the existence of power-law degree distribution under the diameter constra
14、int observed in the Internet backbone network where there are evolutionary pressures to maintain its diameter. Our analysis shows that, if the maximal degree is a N-dependent cutoff function, the form of a robust network degree distribution should be power law to maintain its diameter, while the ave
15、rage connectivity per node affect the distribution exponent slightly.,Outline,Background introduction Network evolution models Dynamical properties on complex networks Personalized recommendation,3.1 Structural effects on synchronizability of scale-free networks,3.1 How to measure the synchronizabil
16、ity,Where Q is the ratio of the eigenvalues. The synchronizability would be increased as Q decreases, vice verse.,The edge exchange method is introduced to adjust the network structure, and the tabu search algorithm is used to minimize the eigenvalue ratio Q,min,Qiang Guo, Liu Jian-Guo, et al, Chine
17、se Physics Letters 24 (8) (2007) 2437-2440.,In summary, using the tabu optimal algorithm, we have optimized network synchronizability by changing the connection pattern between different pairs of nodes while keeping the degree distribution. Starting from scale-free networks, we have studied the depe
18、ndence between the structural characteristics and synchronizability. The numerical results suggest that a scale-free network with shorter path length, lower degree of clustering, and disassortive pattern can be easily synchronized.,3.1 Structural effects on synchronizability,min,max,Combining the ta
19、bu search (TS) algorithm and the edge exchange method, we enhance and weaken the synchronizability of scale-free networks with degree sequence fixed to find the structural effects of the scale-free network on synchronizability,Liu Jian-Guo, et al, International Journal of Modern Physics C 18(7) 1087
20、-1094 (2008).,The numerical results indicate that D, C, r and Bm influence synchronizability simultaneously. Especially, the synchronizability is most sensitive to Bm.,Effect of the loop structure on synchronizability,Outline,Background introduction Network evolution models Dynamical properties on c
21、omplex networks Personalized recommendation,Personalized recommendation,Improved collaborative filtering algorithm based on information transaction. Ultra accuracy recommendation algorithm by considering the high-order user similarities Effect of user tastes on personalized recommendation,Why recomm
22、end,We face too much data and sources to be able to find out those most relevant for us. Indeed, we have to make choices from thousands of movies, millions of books, billions of web pages, and so on. Evaluating all these alternatives by ourselves is not feasible at all.,As a consequence, an urgent problem is how to automatically find out the relevant objects for us.,Collaborative filtering algorithm,Herlocker et al., ACM Trans. Inf. Syst. 22: 5-53 (2004),Content-based algorithm,The user will be recommended items similar to the ones this user prefer
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)財(cái)務(wù)管理制度建立指南
- 2026年化工分析(電化學(xué)分析方法)試題及答案
- 2025年大學(xué)音樂(lè)學(xué)(音樂(lè)美學(xué))試題及答案
- 2025年大學(xué)臨床醫(yī)學(xué)(臨床診療技巧)試題及答案
- 2026年SEO優(yōu)化(關(guān)鍵詞排名技巧)試題及答案
- 2025年高職機(jī)床操作(機(jī)床操作實(shí)操)試題及答案
- 2025年高職(數(shù)字媒體技術(shù))動(dòng)畫(huà)設(shè)計(jì)試題及答案
- 2025年大學(xué)第三學(xué)年(市場(chǎng)營(yíng)銷(xiāo)策劃)方案設(shè)計(jì)階段測(cè)試題及答案
- 2025年大學(xué)大三(數(shù)控機(jī)床故障診斷)常見(jiàn)故障排除階段測(cè)試題及答案
- 2025年中職數(shù)控技術(shù)應(yīng)用(數(shù)控應(yīng)用技術(shù))試題及答案
- 路燈勞務(wù)施工方案(3篇)
- 2026屆高考復(fù)習(xí)之鑒賞詩(shī)歌的語(yǔ)言 教學(xué)課件
- 七年級(jí)上冊(cè)文言文虛詞詳解匯編
- 2025年軍事理論知識(shí)考核試題及答案
- 直招軍官筆試題目及答案
- 2026屆云南省昆明市五華區(qū)數(shù)學(xué)高二第一學(xué)期期末考試試題含解析
- 部編版六年級(jí)語(yǔ)文期末復(fù)習(xí)易錯(cuò)題專(zhuān)題練習(xí)
- 2025年深圳非高危安全管理員和企業(yè)負(fù)責(zé)人習(xí)題(有答案版)(1)1
- 飛行汽車(chē)課件
- 春節(jié)花草養(yǎng)護(hù)知識(shí)培訓(xùn)
- 消防安全隱患排查清單
評(píng)論
0/150
提交評(píng)論