版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、數(shù)學(xué)依舊是高考中重難點(diǎn)科目,要學(xué)好數(shù)學(xué)不是一件容易的事,平常得多學(xué)多練才行。今天小編在這給大家整理了高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),接下來隨著小編一起來看看吧!高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(一)【一】一、集合概念(1)集合中元素的特征:確定性,互異性,無序性。(2)集合與元素的關(guān)系用符號(hào)=表示。(3)常用數(shù)集的符號(hào)表示:自然數(shù)集;正整數(shù)集;整數(shù)集;有理數(shù)集、實(shí)數(shù)集。(4)集合的表示法:列舉法,描述法,韋恩圖。(5)空集是指不含任何元素的集合??占侨魏渭系淖蛹?,是任何非空集合的真子集。函數(shù)一、映射與函數(shù):(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:二、函數(shù)的三要素:相同函數(shù)的判斷方法:對應(yīng)法則;定義域(兩
2、點(diǎn)必須同時(shí)具備)(1)函數(shù)解析式的求法:定義法(拼湊):換元法:待定系數(shù)法:賦值法:(2)函數(shù)定義域的求法:含參問題的定義域要分類討論;對于實(shí)際問題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來確定。(3)函數(shù)值域的求法:配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來求值域;基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;單調(diào)
3、性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域?!径亢瘮?shù)的單調(diào)性、奇偶性、周期性單調(diào)性:定義:注意定義是相對與某個(gè)具體的區(qū)間而言。判定方法有:定義法(作差比較和作商比較)導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))復(fù)合函數(shù)法和圖像法。應(yīng)用:比較大小,證明不等式,解不等式。奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對稱,比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。判別方法:定義法,圖像法,復(fù)合函數(shù)法應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。周期性:定義:若函數(shù)f(
4、x)對定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。其他:若函數(shù)f(x)對定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。四、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)平移變換y=f(x)y=f(x+a),y=f(x)+b注意:()有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。()會(huì)結(jié)合向量的平移,理解按照向量(m,n)平移的意義。對
5、稱變換y=f(x)y=f(-x),關(guān)于y軸對稱y=f(x)y=-f(x),關(guān)于x軸對稱y=f(x)y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱y=f(x)y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱。(注意:它是一個(gè)偶函數(shù))伸縮變換:y=f(x)y=f(x),y=f(x)y=Af(x+)具體參照三角函數(shù)的圖象變換。一個(gè)重要結(jié)論:若f(a-x)=f(a+x),則函數(shù)y=f(x)的圖像關(guān)于直線x=a對稱;【三】(1)定義:(2)函數(shù)存在反函數(shù)的條件:(3)互為反函數(shù)的定義域與值域的關(guān)系:(4)求反函數(shù)的步驟:將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇
6、;將互換,得;寫出反函數(shù)的定義域(即的值域)。(5)互為反函數(shù)的圖象間的關(guān)系:(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。七、常用的初等函數(shù):(1)一元一次函數(shù):(2)一元二次函數(shù):一般式兩點(diǎn)式頂點(diǎn)式二次函數(shù)求最值問題:首先要采用配方法,化為一般式,有三個(gè)類型題型:(1)頂點(diǎn)固定,區(qū)間也固定。如:(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要討論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外。(3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要討論區(qū)間中的參數(shù).等價(jià)命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根注意:若在閉區(qū)間討論方程有實(shí)數(shù)解
7、的情況,可先利用在開區(qū)間上實(shí)根分布的情況,得出結(jié)果,在令和檢查端點(diǎn)的情況。(3)反比例函數(shù):(4)指數(shù)函數(shù):指數(shù)函數(shù):y=(ao,a1),圖象恒過點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a1和0(5)對數(shù)函數(shù):對數(shù)函數(shù):y=(ao,a1)圖象恒過點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對a分a1和0高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(二)【一】(1)算法概念:在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計(jì)算機(jī)來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.(2)算法的特點(diǎn):有限性:一個(gè)算法的步驟序列是有限的,必須在有限操作之后停止,不能是無
8、限的.確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個(gè)步驟只能有一個(gè)確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.不性:求解某一個(gè)問題的解法不一定是的,對于一個(gè)問題可以有不同的算法.普遍性:很多具體的問題,都可以設(shè)計(jì)合理的算法去解決,如心算、計(jì)算器計(jì)算都要經(jīng)過有限、事先設(shè)計(jì)好的步驟加以解決.【二】一、直線與圓:1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角
9、記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;2、斜率:已知直線的傾斜角為,且90,則斜率k=tan.過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。3、直線方程:點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為,斜截式:直線在軸上的截距為和斜率,則直線方程為4、直線與直線的位置關(guān)系:(1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=05、點(diǎn)到直線的距離公式;兩條平行線與的距離是6、圓的標(biāo)準(zhǔn)方程:.圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外
10、一條就是與軸垂直的直線.8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.相離相切相交9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長二、圓錐曲線方程:1、橢圓:方程(ab0)注意還有一個(gè);定義:|PF1|+|PF2|=2a2c;e=長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;2、雙曲線:方程(a,b0)注意還有一個(gè);定義:|PF1|-|PF2|=2a2c;e=;實(shí)軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b23、拋物線:方程y2=2px注意
11、還有三個(gè),能區(qū)別開口方向;定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線x=-;焦半徑;焦點(diǎn)弦=x1+x2+p;4、直線被圓錐曲線截得的弦長公式:5、注意解析幾何與向量結(jié)合問題:1、,.(1);(2).2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為,則數(shù)量|a|b|cos叫做a與b的數(shù)量積,記作ab,即3、模的計(jì)算:|a|=.算??梢韵人阆蛄康钠椒?、向量的運(yùn)算過程中完全平方公式等照樣適用:三、直線、平面、簡單幾何體:1、學(xué)會(huì)三視圖的分析:2、斜二測畫法應(yīng)注意的地方:(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時(shí),把它畫成對應(yīng)軸ox、oy、使xoy=45(或135);(2)平行于x軸的
12、線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.3、表(側(cè))面積與體積公式:柱體:表面積:S=S側(cè)+2S底;側(cè)面積:S側(cè)=;體積:V=S底h錐體:表面積:S=S側(cè)+S底;側(cè)面積:S側(cè)=;體積:V=S底h:臺(tái)體表面積:S=S側(cè)+S上底S下底側(cè)面積:S側(cè)=球體:表面積:S=;體積:V=4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫(1)直線與平面平行:線線平行線面平行;面面平行線面平行。(2)平面與平面平行:線面平行面面平行。(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線5、求角:(步驟-.
13、找或作角;.求角)異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;直線與平面所成的角:直線與射影所成的角高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(三)數(shù)列定義:如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d(1)前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)以上n均屬于正整數(shù)。解釋說明:從(1)式可以看出,an是n的一次函數(shù)(d0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d0)或一次函數(shù)(d=0,a1
14、0),且常數(shù)項(xiàng)為0。在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且為數(shù)列的平均數(shù)。且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d它可以看作等差數(shù)列廣義的通項(xiàng)公式。推論公式:從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=ak+an-k+1,k1,2,n若m,n,p,qN,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,Snk-S(n-1)k或等差數(shù)列,等等。基本公式:和=(首項(xiàng)+末項(xiàng))項(xiàng)數(shù)2項(xiàng)數(shù)=(末
15、項(xiàng)-首項(xiàng))公差+1首項(xiàng)=2和項(xiàng)數(shù)-末項(xiàng)末項(xiàng)=2和項(xiàng)數(shù)-首項(xiàng)末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)公差高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(四)【一】分層抽樣先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個(gè)類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。兩種方法1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。3.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總
16、體,所有的樣本進(jìn)而代表總體。分層標(biāo)準(zhǔn)(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。(3)以那些有明顯分層區(qū)分的變量作為分層變量。分層的比例問題(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例
17、結(jié)構(gòu)?!径?1)定義:對于函數(shù)y=f(x)(xD),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(xD)的零點(diǎn)。(2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn)。(3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):如果函數(shù)y=f(x)在區(qū)間a,b上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)0)的圖象與零點(diǎn)的關(guān)系三二分法對于在區(qū)間a,b上連續(xù)不斷且f(a)f(b)0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法
18、。1、函數(shù)的零點(diǎn)不是點(diǎn):函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個(gè)數(shù),而不是一個(gè)點(diǎn).在寫函數(shù)零點(diǎn)時(shí),所寫的一定是一個(gè)數(shù)字,而不是一個(gè)坐標(biāo)。2、對函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):(1)、f(x)在a,b上連續(xù);(2)、f(a)f(b)0;(3)、在(a,b)內(nèi)存在零點(diǎn)。這是零點(diǎn)存在的一個(gè)充分條件,但不必要。3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的所有函數(shù)值保持同號(hào)。利用函數(shù)零點(diǎn)的存在性定理判斷零點(diǎn)所在的區(qū)間時(shí),首先看函數(shù)y=f(x)在區(qū)間a,b上的圖象是否連續(xù)不斷,再看是否有f(a)f(b)0.若有,則函數(shù)
19、y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn)。四判斷函數(shù)零點(diǎn)個(gè)數(shù)的常用方法1、解方程法:令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。2、零點(diǎn)存在性定理法:利用定理不僅要判斷函數(shù)在區(qū)間a,b上是連續(xù)不斷的曲線,且f(a)f(b)0,那么(3)|a?b|=|a|?|b|.(5)|a|-|b|ab|a|+|b|.(6)|a1+a2+an|a1|+|a2|+|an|.二、不等式的證明1.不等式證明的依據(jù)(2)不等式的性質(zhì)(略)(3)重要不等式:|a|0;a20;(a-b)20(a、bR)a2+b22ab(a、bR,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))2.不等式的證明方法(1)比較法:要證明ab(a0(a-
20、b0),這種證明不等式的方法叫做比較法.用比較法證明不等式的步驟是:作差變形判斷符號(hào).(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.三、解不等式1.解不等式問題的分類(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化為一元一次或一元二次不等式的不等式.解一元高次不等式;解分式不等式;解無理不等式;解指
21、數(shù)不等式;解對數(shù)不等式;解帶絕對值的不等式;解不等式組.2.解不等式時(shí)應(yīng)特別注意下列幾點(diǎn):(1)正確應(yīng)用不等式的基本性質(zhì).(2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性.(3)注意代數(shù)式中未知數(shù)的取值范圍.3.不等式的同解性(5)|f(x)|g(x)與-g(x)g(x)與f(x)g(x)或f(x)-g(x)(其中g(shù)(x)0)同解;與g(x)1時(shí),af(x)ag(x)與f(x)g(x)同解,當(dāng)0aag(x)與f(x)g(x)同四、不等式解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。證不等式的方法,實(shí)數(shù)性質(zhì)威力大
22、。求差與0比大小,作商和1爭高下。直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。五、立體幾何點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇怼>嚯x都從點(diǎn)出發(fā),角度皆為線線成。垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫好移出的圖形。立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。六、平面解析幾何有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范。笛卡爾的觀點(diǎn)對,點(diǎn)和有序?qū)?/p>
23、數(shù)對,兩者一來對應(yīng),開創(chuàng)幾何新途徑。兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實(shí)為方程組思想。三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求。解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)七、排列、組合、二項(xiàng)式定理加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列。兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化。排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。關(guān)于二項(xiàng)式定理,中國楊輝三角
24、形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。八、復(fù)數(shù)虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對數(shù),橫縱坐標(biāo)實(shí)虛部。對應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度。箭桿的長即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試。代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)。一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化。利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長短。三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不
25、得,相等和模與共軛,兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。平方關(guān)系:sin2+cos2=11+tan2=sec21+cot2=csc2積的關(guān)系:sin=tancoscos=cotsintan=sinseccot=coscscsec=tancsccsc=seccot倒數(shù)關(guān)系:tancot=1sincsc=1cossec=1商的關(guān)系:sin/cos=tan=sec/csccos/sin=cot=csc/sec直角三角形ABC中,角A的正弦值就等于角A的對邊比斜邊,余弦等于角A的鄰邊比斜邊正切等于對邊比鄰邊,1三角函數(shù)恒等變形公式兩角和與差的三角函數(shù):cos(+)=cosc
26、os-sinsincos(-)=coscos+sinsinsin()=sincoscossintan(+)=(tan+tan)/(1-tantan)tan(-)=(tan-tan)/(1+tantan)三角和的三角函數(shù):sin(+)=sincoscos+cossincos+coscossin-sinsinsincos(+)=coscoscos-cossinsin-sincossin-sinsincostan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)輔助角公式:Asin+Bcos=(A2+B2)(1/2)sin(+t),其中sint=B/(A2+B2)(1/2)cost=A/(A2+B2)(1/2)tant=B/AAsin-Bcos=(A2+B2)(1/2)cos(-t),tant=A/B倍角公式:sin(2)=2sincos=2/(tan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生產(chǎn)車間4d管理制度
- 安全生產(chǎn)村制度
- 農(nóng)機(jī)監(jiān)理安全生產(chǎn)制度
- 鐵塔生產(chǎn)車間管理制度
- 食品生產(chǎn)加工記錄制度
- 班級安全生產(chǎn)獎(jiǎng)懲制度
- 安全生產(chǎn)值班表制度
- 混凝土廠生產(chǎn)管理制度
- 采煤安全生產(chǎn)責(zé)任制度
- 板式車間生產(chǎn)制度
- 研學(xué)旅行指導(dǎo)手冊
- 大學(xué)生社會(huì)支持評定量表附有答案
- 植入式靜脈給藥裝置(輸液港)-中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)2023
- GB/T 2988-2023高鋁磚
- 東風(fēng)7電路圖解析
- 數(shù)字填圖系統(tǒng)新版(RgMap2.0)操作手冊
- FZ/T 73009-2021山羊絨針織品
- JJF 1069-2012 法定計(jì)量檢定機(jī)構(gòu)考核規(guī)范(培訓(xùn)講稿)
- DFMEA編制作業(yè)指導(dǎo)書新版
- DB35∕T 1844-2019 高速公路邊坡工程監(jiān)測技術(shù)規(guī)程
- 城市管理綜合執(zhí)法局城管執(zhí)法與執(zhí)法程序PPT模板
評論
0/150
提交評論