2017 屆高考數(shù)學考點突破測試題4_第1頁
2017 屆高考數(shù)學考點突破測試題4_第2頁
2017 屆高考數(shù)學考點突破測試題4_第3頁
2017 屆高考數(shù)學考點突破測試題4_第4頁
2017 屆高考數(shù)學考點突破測試題4_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

專題檢測卷三三角函數(shù)與解三角形、平面向量時間120分鐘,滿分150分一、選擇題本大題共12小題,每小題5分,共計60分在每小題給出的四個選項中,只有一項是符合題目要求的12010中山模擬在ABC中,C120,TANATANB,則TAN233ATANB的值為AB1413CD1253【解析】C120,TANABTANCTANCTAN1203又TANAB,TANATANB1TANATANB32331TANATANB1TANATANB,TANATANB2313【答案】B22010湖南在RTABC中,C90,AC4,則等于ABACA16B8C8D16【解析】|COSA|216ABACABACABAC|AC|AB|AC【答案】D32010銀川模擬已知COSSIN,則SIN的值是643576AB235235CD4545【解析】COSSIN,6435SINCOS,SIN3232435645SINSIN76645【答案】C42010福建龍巖一檢設向量ACOS55,SIN55,BCOS25,SIN25,若T是實數(shù),則|ATB|的最小值為AB2212C1D2【解析】|A|1,|B|1,A,B30,|ATB|2A22TABT2B2T2T13當T時|ATB|2取到最小值,3214|ATB|的最小值為12【答案】B52010衡水模擬設函數(shù)FXX3X2TAN,其中SIN33COS2,則導數(shù)F1的取值范圍是0,512A2,2B,23C,2D,232【解析】由已知得FXSINX2COSX,3F1SINCOS2SIN,33又,0,5123334SIN1,F(xiàn)122232【答案】D62010山東青島二模將奇函數(shù)FXASINXA0,0,的圖象向左平移個單位得到的圖象關于原點對稱,226則的值可以為A2B3C4D6【解析】因為函數(shù)FXASINX是奇函數(shù),所以K,KZ又因為,所以022將函數(shù)FXASINXA0,0的圖象向左平移個單位得到FXASIN6,X6該函數(shù)仍是奇函數(shù),所以K,6K,KZ,的值可以為66【答案】D7已知非零向量與滿足0,且,則ABACAB|AB|AC|AC|BCAB|AB|AC|AC|12ABC的形狀是A三邊均不相等的三角形B直角三角形C等腰非等邊三角形D等邊三角形【解析】首先我們注意到向量表示的正好是方向上的單位向量,AB|AB|AB因此由向量加法的平行四邊形法則容易知道向量在BAC的角平分線AB|AB|AC|AC|上,于是由0可見BAC的角平分線與其對邊BC垂直,由此AB|AB|AC|AC|BC得到三角形必為等腰三角形再者,由可得COSAB|AB|AC|AC|12|AB|AB|AC|AC|BACCOSBACBAC60,1212所以三角形ABC應為等邊三角形【答案】D82010遼寧平面上O,A,B三點不共線,設A,B,則OABOAOB的面積等于AB|A|2|B|2AB2|A|2|B|2AB2CD12|A|2|B|2AB212|A|2|B|2AB2【解析】AB|A|B|COSCOS,AB|A|B|則S|A|B|SIN|A|B|,選C12121AB|A|B|212|A|2|B|2AB2【答案】C92010黃崗模擬已知函數(shù)FXASINA0在X時取最小值,X4則函數(shù)YF是34XA奇函數(shù)且在X時取得最大值B偶函數(shù)且圖象關于點,02對稱C奇函數(shù)且在X時取得最小值D偶函數(shù)且圖象關于點2對稱12,0【解析】FXASINXA0在X時取最小值,42K,KZ,即2K,KZ,43254FXASINASIN,X2K54X54YFASINASIN2XASINX34X34X54因此,該函數(shù)為奇函數(shù),在X時取最小值AA02【答案】C10已知COS,則等于412130,4COS2SIN4AB1965713CD16651013【解析】0,0444又COS,41213SIN,41COS24112132513COS2SINSIN22SINCOS22442,45131213120169SINCOSCOS,42441213COS2SIN4120169121312016913121013【答案】D112010青島模擬設函數(shù)FXSIN,則下列結(jié)論正確的是2X3AFX的圖象關于直線X對稱3BFX的圖象關于點對稱4,0C把FX的圖象向左平移個單位,得到一個偶函數(shù)的圖象12DFX的最小正周期為,且在上為增函數(shù)0,6【解析】令2XK,KZ,32即XKZ,A選項錯誤,K212又令2XK,KZ,得XKZ,3K26B選項錯誤,又FXSIN2X3YSINSIN2X123COS2X,2X2選項C正確當X時,2X,0,633,23函數(shù)FXSIN在上先增后減,2X30,6選項D錯誤【答案】C122010全國已知圓O的半徑為1,PA、PB為該圓的兩條切線,A、B為兩切點,那么的最小值為PAPBA4B322C42D3222【解析】如圖,設APO,|2COS2|212SIN2PAPBPAPA|OP|2112|OP|2323,1|OP|22|OP|22當且僅當|OP|2,2|OP|2即|OP|時,“”成立42【答案】D二、填空題本大題共4小題,每小題4分,共計16分把答案填在題中的橫線上132010東城二檢將函數(shù)FX2SIN圖象上每一個點的橫坐標擴2X3大為原來的2倍,所得圖象所對應的函數(shù)解析式為_;若將FX的圖象沿X軸向左平移M個單位M0,所得函數(shù)的圖象關于Y軸對稱,則M的最小值為_【解析】依題意知,F(xiàn)X2SIN圖象上每點的橫坐標擴大為原來的2X32倍,所得圖象的解析式為Y2SINX3如果FX的圖象沿X軸向左平移MM0個單位得Y2SIN,2X32M又其圖象關于Y軸對稱,2MKKZ,32MKZ,當K0時,M有最小值K21212【答案】YSINX312142010山東在ABC中,角A,B,C所對的邊分別為A,B,C若A,B2,SINBCOSB,則角A的大小為_22【解析】SINBCOSB,SIN12B4又0B,B4由正弦定理,知,SINA2SINA2SINB12又AB,AB,A6【答案】6152010北京在ABC中,若B1,C,C,則A_323【解析】由正弦定理,BSINBCSINC即,SINB又BC,BAA11SINB3SIN231266【答案】1162010南京模擬如圖,正方形ABCD中,已知AB2,若N為正方形內(nèi)含邊界任意一點,則的最大值ABAN是_【解析】設,的夾角為ABAN|COS2|COSABANABANAN由圖可知,|COS的最大值即為|ANAB的最大值為224ABAN【答案】4三、解答題本大題共6小題,共74分解答時應寫出必要的文字說明、證明過程或演算步驟1712分2010重慶設函數(shù)FXCOS2COS2,XRX23X1求FX的值域;2記ABC的內(nèi)角A、B、C的對邊長分別為A、B、C,若FB1,B1,C,求A的值3【解析】1FXCOSXCOSSINXSINCOSX1COSXSIN23231232XCOSX1COSXSINX1SIN1,1232X56因此FX的值域為0,22由FB1得SIN11,B56即SIN0,又因0B,故BB566解法一由余弦定理B2A2C22ACCOSB,得A23A20,解得A1或2解法二由正弦定理,BSINBCSINC得SINC,C或當C時,323233A,從而A2;2B2C2當C時,A,又B,2366從而AB1故A的值為1或2【答案】10,22A的值為1或21812分2010安徽設ABC是銳角三角形,A,B,C分別是內(nèi)角A,B,C所對邊長,并且SIN2ASINSINSIN2B3B3B1求角A的值;2若12,A2,求B,C其中BCABAC7【解析】1因為SIN2ASIN2BCOS2BSIN2BSIN2B,32COSB12SINB32COSB12SINB341434所以SINA32又A為銳角,所以A32由12可得CBCOSA12ABAC由1知A,所以CB243由余弦定理知A2C2B22CBCOSA,將A2及代入,得7C2B252,2,得CB2100,所以CB10因此C,B是一元二次方程T210T240的兩個根解此方程并由CB知C6,B4【答案】1A2C6,B431912分2010臨沂二檢如圖,已知ABC中,|AC|1,ABC,BAC,記F23ABBC1求F關于的表達式;2求F的值域【解析】1由正弦定理,得,|BC|SIN,|BC|SIN1SIN23|AB|SIN3SINSIN23233|AB|SINSIN3SIN232333F|COSSINSINABBCABBC343312SINSIN2COS22332COS12SIN361616SIN132616032由0,得236656SIN10SIN,122613261616即F的值域為0,16【答案】1FSIN2132616030,162012分2010泰州三模已知向量A3SIN,COS,B2SIN,5SIN4COS,且AB32,21求TAN的值;2求COS的值23【解析】1AB,AB0而A3SIN,COS,B2SIN,5SIN4COS,故AB6SIN25SINCOS4COS20,即06SIN25SINCOS4COS2SIN2COS2由于COS0,6TAN25TAN40解之,得TAN,或TAN4312,TAN0,故TAN舍去32,212TAN432,32,2234,由TAN,求得TAN,TAN2舍去432122SIN,COS,2552255COSCOSCOSSINSIN232323255125532251510【答案】12432515102112分2010福州模擬在ABC中,角A,B,C的對邊分別為A,B,C,向量PSINA,BC,QAC,SINCSINB,滿足|PQ|PQ|1求角B的大??;2設M,N2K,COS2AK1,MN有最大值為3,求KSINC3,12的值【解析】1由條件|PQ|PQ|,兩邊同時平方得PQ0,又PSINA,BC,QAC,SINCSINB,代入得SINAACBCSINCSINB0,根據(jù)正弦定理,可化為AACBCCB0,即A2C2B2AC,又由余弦定理A2C2B22ACCOSB,所以,COSB,B60122M,N2K,COS2AK1,SINC3,12MN2KSINCOS2A2KSINCBCOS2AC312122KSINACOS2ASIN2A2KSINA1212SINAK2K2K112而0A,SINA0,1,23故當SINA1時,MN取最大值為2K3,K1274【答案】1602742214分2010江蘇某興趣小組要測量電視塔AE的高度H單位M如示意圖,垂直放置的標桿BC的高度H4M,仰角ABE,ADE1該小組已測得一組,的值,TAN124,TAN120,請據(jù)此算出H的值;2該小組分析若干測得的數(shù)據(jù)后,認為適當調(diào)整標桿到電視塔的距離D單位M,使與之差較大,可以提高測量精度若電視塔的實際高度為125M,試問D為多少時,最大【解析】1由AB,BD,AD及ABBDAD,得HTANHTANHTAN,HTANHTANHTAN解得H124HTANTANTAN4124124120因此,算出的電視塔的高度H是124M2由題設知DAB,得TANHD由ABADBD,HTANHTAN得TAN,HHD所以TANTANTAN1TANTANHDHHHDH2HHH當且僅當D,HHHD即D55時,上式取等號所以當HHH12512545D55時,TAN最大5因為0,則0,22所以當D55時,最大故所求的D是55M55【答案】1124M255M5內(nèi)部資料僅供參考內(nèi)部資料僅供參考內(nèi)部資料僅供參考圖23地塊位置圖9JWKFFWVGTYMJG6ACZ7HDQ8KQQFHVZFEDSWSYXTYQA9WKXFYEQDJSXUYUP2KNXPRWXMAUE9AQGN8XPR849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMUE9AQGN8XPR849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z8VGTYMJG6ACZ7HDQ8KQQFHVZFEDSWSYXTYQA9WKXFYEQDJSXUYUP2KNXPRWXMAUE9AQGN8XPR849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXG89AMUE9AQGN8XPR849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z8VGTYMJG6ACZ7HDQ8KQQFHVZFEDSWSYXTYQA9WKXFYEQDJSXUYUP2KNXPRWXMAUE9AQGN8XPR849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMUE9AQGN8XPR849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ84Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9GTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ84Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9GTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSVADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ84Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9GTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ84Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9GTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ84Z89AMVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVUE9WEWZQCUEQYPEH5PDX2ZVKUMGTXRM6X4NGPPVSTTKSV3TNGK8Z89AMYWV3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9CPBKZNMZ849GXGJQVU3TNGK8Z89AMYWPAZADNUKNMUWFA5UXY7JND6YWRRWWCVR9GTXRM6X4NGPPVSTTKSV3TNGK8Z8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論