2020屆高考數(shù)學一輪復習講練測專題2.2函數(shù)的單調性與最值(講)文(含解析).docx_第1頁
2020屆高考數(shù)學一輪復習講練測專題2.2函數(shù)的單調性與最值(講)文(含解析).docx_第2頁
2020屆高考數(shù)學一輪復習講練測專題2.2函數(shù)的單調性與最值(講)文(含解析).docx_第3頁
2020屆高考數(shù)學一輪復習講練測專題2.2函數(shù)的單調性與最值(講)文(含解析).docx_第4頁
2020屆高考數(shù)學一輪復習講練測專題2.2函數(shù)的單調性與最值(講)文(含解析).docx_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

專題2.2 函數(shù)的單調性與最值1.理解函數(shù)的單調性、最大(小)值及其幾何意義2.會運用基本初等函數(shù)的圖象分析函數(shù)的性質.知識點一 函數(shù)的單調性(1)單調函數(shù)的定義增函數(shù)減函數(shù)定義一般地,設函數(shù)f(x)的定義域為I,如果對于定義域I內某個區(qū)間D上的任意兩個自變量的值x1,x2當x1x2時,都有f(x1)f(x2),那么就說函數(shù)f(x)在區(qū)間D上是增函數(shù)當x1f(x2),那么就說函數(shù)f(x)在區(qū)間D上是減函數(shù)圖象描述自左向右看圖象是上升的自左向右看圖象是下降的 (2)單調區(qū)間的定義如果函數(shù)yf(x)在區(qū)間D上是增函數(shù)或減函數(shù),那么就說函數(shù)yf(x)在這一區(qū)間具有(嚴格的)單調性,區(qū)間D叫做yf(x)的單調區(qū)間知識點二 函數(shù)的最值前提設函數(shù)yf(x)的定義域為I,如果存在實數(shù)M滿足條件(1)對于任意的xI,都有f(x)M;(2)存在x0I,使得f(x0)M(3)對于任意的xI,都有f(x)M;(4)存在x0I,使得f(x0)M結論M為最大值M為最小值【特別提醒】1.函數(shù)yf(x)(f(x)0)在公共定義域內與yf(x),y的單調性相反.2.“對勾函數(shù)”yx(a0)的單調增區(qū)間為(,),(,);單調減區(qū)間是,0),(0,.考點一 判斷函數(shù)的單調性【典例1】【2019年高考北京文數(shù)】下列函數(shù)中,在區(qū)間(0,+)上單調遞增的是( )ABy=CD【答案】A【解析】易知函數(shù),在區(qū)間上單調遞減,函數(shù)在區(qū)間上單調遞增.故選A.【方法技巧】函數(shù)不含有參數(shù)解決此類問題時,首先確定定義域,然后利用單調性的定義或借助圖象求解即可?!咀兪?】(2019黑龍江大慶實驗中學模擬)函數(shù)f(x)ln(x22x8)的單調遞增區(qū)間是()A(,2) B(,1)C(1,) D(4,)【答案】D【解析】函數(shù)yx22x8(x1)29圖象的對稱軸為直線x1,由x22x80,解得x4或x0,x110,x210,故當a0時,f(x1)f(x2)0,即f(x1)f(x2),函數(shù)f(x)在(1,1)上單調遞減;當a0時,f(x1)f(x2)0,即f(x1)f(x2),函數(shù)f(x)在(1,1)上單調遞增。方法二:(導數(shù)法)f(x)當a0時,f(x)0,函數(shù)f(x)在(1,1)上單調遞減;當a0時,f(x)0,函數(shù)f(x)在(1,1)上單調遞增。 【方法技巧】判斷函數(shù)單調性常用以下幾種方法:(1)定義法:一般步驟為設元作差變形判斷符號得出結論(2)圖象法:如果f(x)是以圖象形式給出的,或者f(x)的圖象易作出,則可由圖象的上升或下降確定單調性(3)導數(shù)法:先求導數(shù),利用導數(shù)值的正負確定函數(shù)的單調區(qū)間(4)性質法:對于由基本初等函數(shù)的和、差構成的函數(shù),根據(jù)各初等函數(shù)的增減性及f(x)g(x)增減性質進行判斷;【變式2】(2019安徽蚌埠二中模擬)判斷并證明函數(shù)f(x)ax2(其中1a3)在1,2上的單調性【解析】函數(shù)f(x)ax2(1a3)在1,2上單調遞增證明:設1x1x22,則f(x2)f(x1)axax(x2x1) ,由1x10,2x1x24,1x1x24,1.又因為1a3,所以2a(x1x2)0,從而f(x2)f(x1)0,即f(x2)f(x1),故當a(1,3)時,f(x)在1,2上單調遞增考點三 解函數(shù)不等式【典例3】(2019山東濰坊一中模擬) 已知函數(shù)f(x)為R上的減函數(shù),則滿足ff(1)的實數(shù)x的取值范圍是()A(1,1) B(0,1)C(1,0)(0,1) D(,1)(1,)【答案】C【解析】由f(x)為R上的減函數(shù)且ff(1),得即所以1x0或0x1.故選C.【方法技巧】求解函數(shù)不等式問題,主要是利用函數(shù)的單調性將“f”符號脫掉,使其轉化為具體的不等式求解此時應特別注意函數(shù)的定義域以及函數(shù)奇偶性質的應用【變式3】(2019廣東深圳中學模擬)設函數(shù)f(x)是奇函數(shù),且在(0,)內是增函數(shù),又f(3)0,則f(x)0的解集是()Ax|3x3Bx|x3或0x3Cx|x3Dx|3x0或0x3【答案】B【解析】f(x)是奇函數(shù),f(3)0,f(3)f(3)0,解得f(3)0.函數(shù)f(x)在(0,)內是增函數(shù),當0x3時,f(x)3時,f(x)0.函數(shù)f(x)是奇函數(shù),當3x0;當x3時,f(x)0.則不等式f(x)0的解集是x|0x3或x3考點四 利用函數(shù)的單調性求參數(shù)【典例4】(2019重慶南開中學模擬)若f(x)是定義在R上的減函數(shù),則a的取值范圍為_【答案】【解析】由題意知,解得所以a.【方法技巧】根據(jù)函數(shù)單調性把問題轉化為單調區(qū)間關系的比較。【變式4】(2019成都實驗外國語學校模擬)設函數(shù)f(x)若函數(shù)f(x)在區(qū)間(a,a1)上單調遞增,則實數(shù)a的取值范圍是()A(,1 B1,4C4,) D(,14,)【答案】D【解析】作出函數(shù)f(x)的圖象如圖所示,由圖象可知,若f(x)在(a,a1)上單調遞增,需滿足a4或a12,即a1或a4,故選D.考點五 函數(shù)的最值【典例5】(2018全國)若f(x)cos xsin x在0,a上是減函數(shù),則a的最大值是()A. B. C. D【答案】C【解析】f(x)cos xsin xsin,當x,即x時,ysin單調遞增,f(x)sin單調遞減,是f(x)在原點附近的單調減區(qū)間,結合條件得0,a,a,即amax.【方法技巧】求函數(shù)最值(值域)的常用方法(1)單調性法:先確定函數(shù)的單調性,再由單調性求最值.(2)圖象法:先作出函數(shù)的圖象,再觀察其最高點、最低點,求出最值.(3)基本不等式法:先對解析式變形,使之具備“一正二定三相等”的條件后用基本不等式求出最值.(4)導數(shù)法:先求導,然后求出在給定區(qū)間上的極值,最后結合端點值,求出最值.【變式5】(2019山東菏澤一中模擬)定義新運算:當ab時,aba;當ab時,abb2,則函數(shù)f(x)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論