圓與圓的位置關(guān)系_第1頁
圓與圓的位置關(guān)系_第2頁
圓與圓的位置關(guān)系_第3頁
圓與圓的位置關(guān)系_第4頁
圓與圓的位置關(guān)系_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

,圓與圓的位置關(guān)系,知識回顧:直線和圓的位置關(guān)系及判定方法:,幾何方法,圓心到直線的距離d(點(diǎn)到直線距離公式),代數(shù)方法,消去y(或x),新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,新課導(dǎo)入,設(shè)想:如果把月亮與太陽看成同一平面內(nèi)的兩個圓,那么兩個圓在作相對運(yùn)動的過程中有幾種位置關(guān)系產(chǎn)生呢?,觀察兩圓的相對位置和交點(diǎn)個數(shù),1個,2個,1個,0個,0個,1個,2個,0個,1個,0,圓與圓的位置關(guān)系,外離,dr1+r2,d=r1+r2,|r1-r2|dr1+r2,d=|r1-r2|,0d|r1-r2|,外切,相交,內(nèi)切,內(nèi)含,五種,d=0,同心圓,(一種特殊的內(nèi)含),無公共點(diǎn)4條公切線,唯一公共點(diǎn)3條公切線,兩個公共點(diǎn)2條公切線,唯一公共點(diǎn)1條公切線,無公共點(diǎn)無公切線,圓心距為d,r1+r2,r1,r2,r1-r2,r1+r,圓與圓的位置關(guān)系:,圓和圓相離,圓和圓外切,圓和圓相交,圓和圓內(nèi)切,圓和圓內(nèi)含,設(shè)兩圓圓心距離為d,半徑分別為r1,r2,交點(diǎn)個數(shù),1,0,2,1,0,三圓與圓的位置關(guān)系的判定:,幾何方法,兩圓心坐標(biāo)及半徑(配方法),圓心距d(兩點(diǎn)間距離公式),比較d和r1,r2的大小,下結(jié)論,代數(shù)方法,消去y(或x),例1設(shè)圓C1:x2+y2+2x+8y-8=0,圓C2:x2+y2-4x-4y-2=0,試判斷圓C1與圓C2的關(guān)系.,(3,-1),(-1,1),.,.,(2,2),(-1,-4),x+2y-1=0,判斷C1和C2的位置關(guān)系,解:聯(lián)立兩個方程組得,-得,把上式代入,所以方程有兩個不相等的實(shí)根x1,x2,把x1,x2代入方程得到y(tǒng)1,y2,所以圓C1與圓C2有兩個不同的交點(diǎn)A(x1,y1),B(x2,y2),聯(lián)立方程組,消去二次項(xiàng),消元得一元二次方程,用判斷兩圓的位置關(guān)系,解法二:把圓C1的方程化為標(biāo)準(zhǔn)方程,得圓C1的圓心是點(diǎn)(-1,-4),半徑長r1=5.把圓C2的方程化為標(biāo)準(zhǔn)方程,得圓C1的圓心是點(diǎn)(2,2),半徑長r2=.圓C1與圓C2的連心線長為圓C1與圓C2的半徑之和是兩半徑之差是所以圓C1與圓C2相交,求兩圓心坐標(biāo)及半徑(配方法),求圓心距d(兩點(diǎn)間距離公式),比較d和r1,r2的大小,下結(jié)論,練習(xí),1.判斷圓與圓的位置關(guān)系.,2.判斷圓與圓的位置關(guān)系.,外切,相交,兩圓相交時,相交弦所在直線方程為兩圓方程相減的一次方程,探究,變式:求這兩個圓的公共弦長,解法一:根據(jù)求得的A(-1,1),B(3,-1)則,解法二:圓心c1(-1,-4)到直線x-2y-1=0的距離所以,反思,判斷兩圓位置關(guān)系,幾何方法,代數(shù)方法,各有何優(yōu)劣,如何選用?,(1)當(dāng)=0時,有一個交點(diǎn),兩圓位置關(guān)系如何?,內(nèi)切或外切,(2)當(dāng)0時,沒有交點(diǎn),兩圓位置關(guān)系如何?,幾何方法直觀,但不能求出交點(diǎn);代數(shù)方法能求出交點(diǎn),但=0,0時,不能判斷圓的位置關(guān)系。,內(nèi)含或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論