數(shù)形結(jié)合思想在解題中的應(yīng)用   【畢業(yè)論文】_第1頁
數(shù)形結(jié)合思想在解題中的應(yīng)用   【畢業(yè)論文】_第2頁
數(shù)形結(jié)合思想在解題中的應(yīng)用   【畢業(yè)論文】_第3頁
數(shù)形結(jié)合思想在解題中的應(yīng)用   【畢業(yè)論文】_第4頁
數(shù)形結(jié)合思想在解題中的應(yīng)用   【畢業(yè)論文】_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

本科畢業(yè)論文(2010屆)題目數(shù)形結(jié)合思想在解題中的應(yīng)用學(xué)院數(shù)學(xué)與信息工程學(xué)院專業(yè)數(shù)學(xué)與應(yīng)用數(shù)學(xué)班級(jí)2006級(jí)數(shù)學(xué)班學(xué)號(hào)學(xué)生姓名指導(dǎo)教師完成日期2010年5月I摘要數(shù)形結(jié)合是數(shù)學(xué)研究和學(xué)習(xí)中的重要思想和解題方法,用數(shù)形結(jié)合方法可以使復(fù)雜問題簡單化、抽象問題具體化;能夠變抽象的數(shù)學(xué)語言為直觀的圖形、抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì)。所謂數(shù)形結(jié)合就是根據(jù)數(shù)學(xué)問題的條件和結(jié)論之間的內(nèi)在聯(lián)系分析其代數(shù)含義,又揭示其幾何直觀,使數(shù)量關(guān)系與空間形式和諧結(jié)合在一起的方法。通過“以形助數(shù)”和“以數(shù)輔形”這兩大題型的具體分析,揭示出“數(shù)”與“形”之間的緊密關(guān)系,從而把問題優(yōu)化,獲得解決。關(guān)鍵詞數(shù)形結(jié)合線性規(guī)劃數(shù)量關(guān)系IIABSTRACTCOMBININGTHEOPERATIONWITHFIGUREISTHESTUDYOFMATHEMATICSANDLEARNINGTHEIMPORTANTTHINKINGANDPROBLEMSOLVINGMETHODS,WHICHCANSIMPLIFYCOMPLICATEDPROBLEMS,SPECIFYTHEABSTRACTONES,ANDTURNTHEABSTRACTSHAPESANDTHOUGHTTOBEVISUAL,ANDISACCORDINGLYHELPFULTOGRASPTHEESSENCEOFMATHEMATICSTHESOCALLEDCOMBINATIONISANAPPROACH,WHICHNOTONLYANALYZEMEANINGOFALGEBRA,BUTALSODISCLOSETHESIGNIFICANCEOFGEOMETRYACCORDINGTOTHEINSIDERELATIONSHIPOFCONDITIONSANDCONCLUSIONS,ANDHARMONIOUSLYCOMBINESTHEFORMOFNUMBERANDSPACEASONETHISARTICLEWILLSETFORTHTHETIGHTCONTACTBETWEENALGEBRAANDGEOMETRYTHROUGHOUTTHEANALYSISOFTWOTYPICALSTYLES“GEOMETRYHELPSUNDERSTANDALGEBRA”AND“ALGEBRAHELPSUNDERSTANDGEOMETRY”,INORDERTOSOLVERELEVANTPROBLEMSWELLKEYWORDSTHECOMBINATIONOFALGEBRAANDGEOMETRYTHELINEARPROGRAMMINGQUANTITATIVERELATIONSHIPIII目錄1引言12以形助數(shù),代數(shù)問題幾何化221以形助數(shù)解決集合問題222以形助數(shù)解決取值范圍問題323以形助數(shù)解決解含參數(shù)問題424以形助數(shù)解決不等式問題G252G24以形助數(shù)G8726G2001數(shù)G7509值G252G25以形助數(shù)在解析幾何中的G5224用G262G26G1523助于復(fù)G5191G19766G990的G9869解決復(fù)數(shù)問題G273G714以數(shù)輔形,幾何問題代數(shù)化G2731用代數(shù)方法解決G5191G19766幾何問題G2732用代數(shù)方法解決G12447體幾何的問題G28參G13783G7003G1049811G16886G17778121數(shù)形結(jié)合思想在解題中的應(yīng)用APPLICATIONOFTHEFIGUREANDSHAPECOMBINATIONINSOLVINGPROBLEMS1引言A2A0A1A3A4A5A6A7A2A8A9A10A11A12A13A14A15A16A17A18A19A20A7A21A22A25A26A2A11A14A23A24A27A28A10A25A31A23A29A1A24A27A30A32A7A35A36A33A34A7A2A8A9A10A37A12A13A14A15A38A39A40A41A42A43A25A46A44A36A2A8A9A10A30A32A45A47A14A7A48A51A33A34A25A46A44A36A47A14A7A48A51A30A32A45A2A8A9A10A33A34A25A29A1A49A50A52A53A22A7A2A0A33A34A54A55A32A58A59A56A32A25A61A57A60A53A22A62A63A17A14A22A62A63A64A65A66A67A33A34A7A62A68A37A69A70A71A23A2A14A38A39A7A62A68A69A70A35A74A72A2A0A73A75A76A77A25A80A78A72A79A8A81A79A58A84A82A11A83A82A7A85A86A87A25A71A36A2A11A14A28A10A40A41A88A35A91A92A89A90A76A77A25A10A93A94A95A96A88A97A98A33A34A99A2A32A7A69A70A25A102A99A2A15A100A101A50A52A97A98A103A104A25A36A47A14A105A13A7A97A98A9A10A106A107A45A99A2A15A105A13A7A99A2A9A10A35A110A108A5A109A111A112A113A25A70A92A2A0A114A115A116A117A1A118A119A17A120A121A25A72A122A37A2A21A105A13A58A69A86A37A123A124A105A13A125A126A40A41A21A127A9A10A25A102A99A2A69A70A19A20A97A98A33A34A25A130A26A128A126A88A132A129A97A98A0A35A134A41A25A97A98A0A87A131A133A81A77A135A61A132A136A7A33A34A25A139A137A138A140A141A142A143A144A58A126A69A145A82A58A32A146A17A69A140A33A34A25A149A147A31A148A150A151A99A2A69A70A152A153A88A154A155A7A132A136A35A158A49A72A156A99A11A3A99A2A0A7A19A20A87A25A97A98A33A34A7A99A2A32A31A23A157A159A160A161A7A69A70A162A163A25A166A164A165A167A7A127A102A35A170A168A2A37A14A7A169A72A28A10A25A135A171A49A97A98A0A172A152A88A99A2A32A7A166A173A174A175A25A31A49A131A133A99A2A0A11A2A0A141A129A7A176A34A175A166A88A177A178A7A54A55A48A25A72A2A0A132A34A87A25A181A102A2A14A38A39A62A68A25A71A23A179A180A33A34A7A175A83A182A14A25A46A44A36A47A14A48A51A33A34A30A32A45A2A8A9A10A41A19A20A25A134A44A36A2A8A9A10A33A34A30A32A45A47A14A48A51A41A19A20A25A1A183A1A2A150A14A46A1A14A150A2A25A49A2A0A33A34A184A185A32A58A53A22A33A34A175A83A32A35A2A0A0A186A87A25A135A185A187A23A2A7A188A189A37A14A7A19A20A25A192A133A7A23A102A2A14A38A39A62A68A132A34A35A193A190A191A194A195A85A198A199A2A0A23A19A20A3A4A5A6A7A8A7A9A10A37A12A13A14A15A7A196A0A35A201A2A14A38A39A71A23A179A180A2A0A33A34A7A159A202A11A38A197A105A13A7A169A72A28A10A25A204A141A129A18A99A2A143A200A25A206A203A205A18A97A98A54A55A25A49A2A8A9A7A207A208A209A210A37A12A13A14A15A7A54A55A14A22A211A212A58A11A213A94A38A39A72A157A40A25A216A141A214A102A64A65A38A39A25A218A215A132A34A62A217A25A49A33A34A32A2192A17A220A58A32A221A17A184A25A130A26A152A153A132A136A35A224A151A49A102A88A2A14A38A39A7A69A70A25A225A133A33A34A183A222A223A26A132A25A228A132A70A184A226A230A199A2A201A37A199A14A201A23A157A21A227A229A25A233A231A13A232A234A235A135A23A199A2A201A11A199A14A201A7A227A229A7A93A157A35A238A236A237A239A59A195A85A198A199A2A240A14A76A241A54A55A25A14A241A2A76A219A242A243A25A2A14A38A39A244A245A246A25A249A247A141A114A232A248A250A35A201A127A102A2A251A252A253A254A255A16A0A1A2A3A4A5A124A198A20A6A25A1A2A253A7A251A8A9A10A11A12A50A25A13A14A15A10A17A255A8A9A18A19A21A58A22A23A10A253A24A17A255A25A8A9A26A134A10A17A255A27A28A11A12A10A29A20A30A25A1A2A31A32A199A253A201A10A33A34A50A35A199A251A201A10A36A84A50A25A37A38A39A40A41A124A42A253A17A255A25A8A9A18A43A251A134A0A44A45A199A253A201A10A33A34A50A25A46A61A47A48A49A34A252A210A51A166A54A17A255A52A53A27A10A43A251A55A56A6A25A0A163A57A55A59A10A60A62A63A48A64A27A10A43A251A134A25A65A98A66A67A210A68A254A51A253A251A252A253A10A69A70A71A3A72A73A54A74A75A10A253A24A17A255A76A77A9A58A78A79A9A80A61A81A82A74A75A69A83A85A251A75A69A83A80A166A86A87A88A89A253A24A17A255A10A90A91A92A93A94A80A224A87A72A32A95A253A251A252A253A10A96A97A80A225A99A17A255A100A101A102A103A254A80A228A254A97A19A229A80A61A104A105A14A15A10A106A107A51A0A1A2A108A109A110A111A69A70A2A112A80A113A114A115A116A166A43A80A117A253A70A43A80A3A118A119A120A121A69A83A10A122A123A51A253A251A252A253A10A69A70A96A97A125A117A10A126A127A254A96A128A35A254A55A11A129A17A255A116A80A127A68A130A253A10A131A132A58A149A131A17A255A116A80A127A68A14A253A35A133A135A130A253A17A255A116A51A3A4A136A53A253A251A252A253A69A70A127A254A255A116A10A27A32A137A199A3A251A86A253A201A35A199A3A253A138A251A201A110A5A96A84A139A140A6A141A142A67A512以形助數(shù),代數(shù)問題幾何化A143A144A78A79A61A81A145A146A69A147A25A148A86A152A254A51A150A151A25A153A86A143A144A78A79A24A154A35A152A254A253A24A25A28A253A24A24A154A116A10A155A0A96A15621以形助數(shù)解決集合問題A43A157A97A28A158A253A10A155A0A159A157A97A160A6A25A53A6A54A161A162A74A75A10A158A253A17A255A25A127A254A255A16A164A153A86A165A193A43A167A32A253A168A58A43A75A11A253A251A252A253A10A69A70A96A97A25A169A169A71A3A72A17A255A78A79A9A58A251A75A9A25A137A103A170A171A58A78A79A58A19A229A58A172A34A173A174A254A51A1751A176A73A177A22450A24A178A179A10A180A181A182A77A183A116A25A184A185A186A187A180A10A16638A25A185A186A188A180A10A16641A25A185A189A190A180A10A16627A230A204A184A185A186A187A180A206A184A185A186A188A180A10A16632A204A184A185A186A188A180A206A184A185A189A190A180A10A16621A25A191A185A189A190A180A206A184A185A186A187A180A10A16620A17A59A16A184A185A110A133A181A180A10A166A99A192A194A1953A196A431A197A200A202A198A126A203A43A52A157A25A59A16A184A185A133A181A180A10A166A205A194A196A207A208A209A200A197A25A184A185A186A187A180A10A166A198203238X(A211A212A213A214A215A216A217A218A219A220A221213241X(A211A212A213A214A215A222A223A218A219A220A221202127X(A211A212A226A227A231A232A212A233A221502212032202127213241203238XXXX(A234A23517XA236A237A238A214A215A239A240A241A218A219A22017A211A24222以形助數(shù)解決取值范圍問題A24312A244A245A246A2473COS,|0,3SINXMXYYPICCA206A117OAOCOB21A32A228A134A236A27A39XA73A135A153AA58BA33A124A35A118A34A28A29A36A37A300,2CA580,CA32A26A134A236A27CBXAXY2A9A49A38A6AA58BA58CA141A124A322420ACBCC120ACBCC2000C3142A154630BCCA1183210CBYXACBO6A1170CA118210BA11821BA158A10A4BA55A3021A3524以形助數(shù)解決不等式問題A2485A78A8A137A132A212XXA53A40A8A1A198A164A137A132A21A132A41A1531200202202XXXXXXA44A42A43A66A67A6912YXA70A71A72A752YXA70A113A74A70A166A76A77A79A70A168A120A80A43A82A83A71A43A51A52A54A70A42A68A56|ABXXXXX,A118QTAN,XX2122142A25A30A228A32A30XX2A25A1582XA33A34A201A48A35A211A118QTANA11A14A15A16A1942A211A164A13A36A104A25A101A24A37A38A11A39A40A27A132A174A87A41A219A42A25A129A43A25A64A44A221A45A25A99A47A37A38A49A50A51A52A25A53A55A11A223A56A57A238A58A59A60A61A62A225A63A198A34A24A65A53A33A67A51A226A25A53A67A24A33A68A69A70A57A201A72A102A24A53A73A74A11A64A76A77A79A227A80A81A82A37A38A85A83A25A86A88A90A187A230A132A38A85A191A57A91A92A95A96A97A98A100A103A105A106A107A109A110A111A112A113A114A115A119A120A121A122A112A123A125A114A100A103A105A106A127A123A119A137A128A125A130A131A133A109A110A112A232A134A135A123A192A136A138A112A115A235A95A96A141A142A144A145A112A146A147A148A236A149A150A151A152A107A100A153A109A110A111A91A92A138A237A154A155A100A154A156A157A148A159A160A161A103A162A163A239A166A123A167A168A200A169A170A171A173A175A148A103A176A173A175A177A178A179A180A112A113A114A15211參考文獻(xiàn)A181A182A184A185A186A188A189A190A193A194A196A197A202A203A204A205A207A208A209A212A194A220A222A224A203A229A231A181A233A184A189A234A240A241A242A244A245A244A246A247A248A249A249A250A247A251A252A253A254A255A250A249A248A43A250A249A2A1A248A3A45A0A4A8A9A5A6A7A10A11A12A13A14A15A16A17A18A48A19A1A20A3A8A50A21A22A23A24A247A248A249A249A251A247A252A248A254A255A55A248A43A251A2A1A2A3A45A25A26A8A16A9A5A27A18A6A7A10A11A28A29A6A30A31A1A20A3A8A50A21A32A33A34A247A248A249A249A55A247A252A248A249A254A255A248A35A35A1A35A3A66A36A37A8A6A7A10A11A38A39A12A6A40A13A14A15A16A17A18A1A20A3A8A69A41A23A24A40A42A40A34A247A248A249A249A251A247A250A250A252A250A254A255A250A250A253A43A250A250A44A1A253A3A72A46A47A8A9A49A6A7A10A11A12A29A6A23A40A15A16A17A18A1A20A3A8A50A21A51A52A53A34A247A248A249A249A251A247A252A250A35A254A255A248A253A35A1A44A3A79A54A56A8A6A7A10A11A12A57A15A6A40A13A14A15A16A17A18A1A20A3A8A83A58A59A60A40A34A247A248A249A249A35A252A2A254A255A250A249A2A43A250A249A253A1A87A3A88A61A8A9A5A6A7A10A11A62A63A12A13A14A15A16A17A18A1A20A3A8A50A21A51A52A53A34A247A248A249A249A251A247A252A250A254A255A250A55A250A1A55A3A45A64A8A93A65A67A68A70A71A16A6A7A10A11A73A63A22A13A63A1A20A3A8A100A74A75A76A23A24A40A42A40A34A247A248A249A249A55A247A250A35A252A250A254A255A250A249A35A43A250A249A253A1A251A3A104A77A78A8A9A5A6A7A10A11A63A12A13A14A15A16A80A18A1A20A3A8A108A81A59A82A84A40A40A34A247A250A251A251A55A247A252A35A254A255A44A2A43A44A35A1A250A249A3STEPHANIEJMORRIS,THEPYTHAGOREANTHEOREMJ,DEPARTMENTOFMATHEMATICSEDUCATIONJWILSON,EMT669A1A250A250A3GIANLUCAFUSAI,CORRIDOROPTIONSANDARCSINELAWJANNAPP1PROBABVOLUME10,NUMBER22000A85634663A1A250A248A3A112A86A8A5A6A7A10A11A38A39A12A13A14A15A16A17A18A1A20A3A8A114A89A90A60A40A34A247A248A249A249A55A247A252A44A254A255A250A55A253A43A250A251A249A1A250A2A3A45A52A91A247A118A92A78A8A12A6A40A94A95A23A40A15A96A97A6A7A10A11A38A39A1A20A3A8A15A40A6A40A98A99A247A248A249A249A249A255A250A249A43A250A250A1A250A35A3A126A101A8A6A7A10A11A63A16A102A103A17A18A1A20A3A8A130A105A26A59A82A40A42A40A34A247A248A249A249A2A247A252A253A254A255A55A55A43A251A249A1A250A253A3A132A4A93A8A6A7A10A11A12A13A14A15A16A17A18A1A20A3A8A133A106A107A109A40A42A40A34A247A248A249A249A44A247A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論