等腰三角形的判斷_第1頁
等腰三角形的判斷_第2頁
等腰三角形的判斷_第3頁
等腰三角形的判斷_第4頁
等腰三角形的判斷_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 等腰三角形的判定等腰三角形的判定等腰三角形有些什么性質?等腰三角形有些什么性質?1.等腰三角形的兩底角相等等腰三角形的兩底角相等(簡寫成(簡寫成 “等邊對等角等邊對等角”) ABC在在ABC 中,中,AB=AC(已知已知)B=C(等邊對等角)2.等腰三角形的頂角的平分線、底邊上的中線、底等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合(邊上的高互相重合( 簡寫成簡寫成“三線合一三線合一” )ABCDAB=AC,BD=CD(已知)BAD=CAD, ADBC(三線合一)AB=AC,BAD=CAD (已知已知) BD=CD ,ADBC(三線合一)AB=AC, ADBC (已知已知) BD

2、=CD ,BAD=CAD (三線合一)3 3、等腰三角形的對稱軸是什么?等腰三角形的對稱軸是什么? 思考:如圖,位于在海上思考:如圖,位于在海上A、B兩處的兩艘救生船接到兩處的兩艘救生船接到O處遇處遇險船只的報警,當時測得險船只的報警,當時測得A=B。如果這兩艘救生船以同。如果這兩艘救生船以同樣的速度同時出發(fā),能不能大約同時趕到出事地點(不考慮樣的速度同時出發(fā),能不能大約同時趕到出事地點(不考慮風浪因素)?風浪因素)?在一般的三角形中,如果有兩個角相等,在一般的三角形中,如果有兩個角相等,那么它們所對的邊有什么關系?那么它們所對的邊有什么關系?oAB 如果一個三角形有兩個角相等,那么這兩個角如

3、果一個三角形有兩個角相等,那么這兩個角所對的邊也相等所對的邊也相等.(.(簡單說成:等角對等邊)簡單說成:等角對等邊)ACB 已知:如圖,在已知:如圖,在ABC中,中,B= = C. .求證:求證: AB=AC. .一、創(chuàng)設情境,提出問題一、創(chuàng)設情境,提出問題二、探索分析,解決問題二、探索分析,解決問題 分析:類比等腰三角形性質的證明,添加輔助線,構分析:類比等腰三角形性質的證明,添加輔助線,構造以造以AC,AB為邊的兩三角形,并證明它們全等為邊的兩三角形,并證明它們全等. .ACB證明:過點證明:過點A作作ADBC于于D.在在ABD與與ACD中,中,B= = C,ADB= = ADC=90,

4、AD=AD, ABD ACD(AAS) ),AB=AC.D追問你還有其他證明方法嗎?追問你還有其他證明方法嗎? 證明:證明:作作ABCABC的角平分線的角平分線AD.AD.則則BAD= CADBAD= CAD在在ABD 和和ACD中,中,ABCDB =C,BAD= CADBAD= CAD, AE = = AE, ABD ACD (AAS) (AAS) AB = = AC 已知:如圖,在已知:如圖,在ABC 中,中,B =C. .求證:求證:AB= =AC思考:如果作思考:如果作ABC的中線的中線AD能證明嗎?能證明嗎? 如果一個三角形有兩個角相等,那么這兩個角如果一個三角形有兩個角相等,那么這

5、兩個角所對的邊也相等所對的邊也相等. .簡寫成簡寫成“等角對等邊等角對等邊”. . 等腰三角形的判定定理:等腰三角形的判定定理:二、探索分析,解決問題二、探索分析,解決問題符號語言:符號語言:在在ABC 中中,B = =C,AB = =AC(等角對等邊等角對等邊)ABC注意:注意: “等角對等邊等角對等邊”的前提是的前提是一個一個 三角形三角形等腰三角形的性質與判定有區(qū)別嗎?性質是:等邊 等角判定是:等角 等邊練習練習1CBAD12解答已知:如圖已知:如圖A=360 , DBC =360, C=720。計算計算1和和2,并說明圖中有哪些等腰三角形?,并說明圖中有哪些等腰三角形?解:解:1=72

6、02=360等腰三角形有:等腰三角形有: ABC, ABD, BCD例例1 1:求證:如果三角形一個外角的平分線平行于求證:如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形。三角形的一邊,那么這個三角形是等腰三角形。求證:求證:ABCABC是等腰三角形是等腰三角形如圖,如圖,CAE是是ABC的外角,的外角,AD平分平分CAE , ADBC。已知:已知:證明:證明:ADBC,1=B(兩直線平行(兩直線平行,同位角相等)同位角相等) 2=C(兩直線平行(兩直線平行,內錯角相等)內錯角相等) AD平分平分CAE 1=2,B=C, ABC是等腰三角形是等腰三角形。ABCDE12

7、練習練習2BADC已知:如圖,已知:如圖,AD BC,BD平分平分ABC。求證:求證:AB=ADBADC證明:證明: AD BC AD BC ADB=ADB=DBCDBC BD平分平分ABC ABD=ABD=DBCDBCABD=ABD=ADBADBAB=AD AB=AD (等角對等邊)(等角對等邊)已知:如圖,已知:如圖,AD BC,BD平分平分ABC。求證:求證:AB=ADBADC 練習練習4如圖,如圖,AC 和和BD 相交于點相交于點O,且,且ABDC,OA = =OB求證:求證:OC = =ODABCDODC鞏固等腰三角形的判定定理鞏固等腰三角形的判定定理例例2已知等腰三角形底邊長為已知

8、等腰三角形底邊長為a ,底邊上的高的底邊上的高的 長為長為h ,求作這個等腰三角形,求作這個等腰三角形. .ah作法:作法:(1)作線段)作線段AB = =a;(2)作線段)作線段AB 的垂直平分線的垂直平分線MN,與,與 AB 相交于點相交于點D;(3)在)在MN上取一點上取一點C,使,使DC = =h; (4)連接)連接AC,BC,則,則ABC 就是所就是所 求作的等腰三角形求作的等腰三角形. .ABMN課堂練習課堂練習 練習練習2如圖,把一張長方形的紙沿著對角線折疊,如圖,把一張長方形的紙沿著對角線折疊,重合部分是一個等腰三角形嗎?為什么?重合部分是一個等腰三角形嗎?為什么?2、如圖,把

9、一張矩形的紙沿對角線折疊,重合的部分是一個等腰三角形嗎?為什么?ABCGDE123解:解:重合部分是等腰三角形。重合部分是等腰三角形。理由:由理由:由ABDC是矩形知是矩形知 ACBD 3= 2由沿對角線折疊知由沿對角線折疊知 1 = 2 1= 3 BG=GC(等角對等邊等角對等邊)2、如圖,把一張矩形的紙沿對角線、如圖,把一張矩形的紙沿對角線折疊,重合部分是一個等腰三角形折疊,重合部分是一個等腰三角形嗎?為什么?嗎?為什么?ABCEDC答:答:重合部分是一個等腰三角形。重合部分是一個等腰三角形。由折疊可知由折疊可知CCED=AD=AEB B,C=A C=A ,CD=AB,EABEABECDE

10、CD(AASAAS)EB=ED1、等腰三角形的判定方法有下列幾、等腰三角形的判定方法有下列幾種:種: 。2、等腰三角形的判定定理與性質定理的區(qū)別、等腰三角形的判定定理與性質定理的區(qū)別是是 。3、運用等腰三角形的判定定理時,應注、運用等腰三角形的判定定理時,應注意意 。定義,判定定理定義,判定定理 條件和結論剛好相反。條件和結論剛好相反。在同一個三角形中在同一個三角形中思考:在ABC中,已知 ,BO平分ABC,CO平分ACB.(1)請問圖中有多少個等腰三角形?說明理由.(2)線段EF和線段EB,FC之間有沒有關系?若有是什么關系?FE0BCAACAB 若AB=ACABACB B0CAE EF F

11、過點O作直線EF/BC交AB于E,交AC于F.ABCDE2.2.已知在等腰已知在等腰ABCABC中,中,A=36A=36, B=72B=72,C=72C=72,請同學們想一想,如何添一條線,將等腰請同學們想一想,如何添一條線,將等腰ABCABC分成兩個等腰分成兩個等腰三角形?成功后,如何再添一條線,多得到一個等腰三角形?三角形?成功后,如何再添一條線,多得到一個等腰三角形?還可以繼續(xù)嗎?還可以繼續(xù)嗎?只要作只要作 B B的角平分線即可!的角平分線即可!只要再做只要再做 BDC BDC的角平分線即可!的角平分線即可!以下步驟重復下去即可!以下步驟重復下去即可!趣味數(shù)學趣味數(shù)學如圖如圖, ,在在ABCABC中中,AB=AC, A=36,AB=AC, A=36, ,你能把你能把ABCABC分成三個等腰分成三個等腰三角形嗎三角形嗎?(?(提供兩中以上不同的作圖方案提供兩中以上不同的作圖方案) )ABCDEA BCD EABC動手畫一畫動手畫一畫ABCABCABC 2.在正方形在正方形ABCD內找一點內找一點P,使,使PAB、PBC、PCD、PAD都是等腰三角形,這樣的都是等腰三角形,這樣的P點有幾點有幾個?在正方形個?在正方形ABCD外呢?外呢?BACD答:在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論