版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、Chapter EightDigital Filter Structures Main Contents in this chapter1. Block Diagram Representation of the LTI Digital Filter2. Basic FIR Filter Structure3. Basic IIR Filter Structure Introduction The actual implementation of a LTI digital filter could be either in software or hardware form, dependi
2、ng on applications.But ,how can we realize those filters?For a LTI FIR system we knowFor a LTI IIR systemThe convolution sum description of an LTI discrete-time system can, in principle, be used to implement the systemFor an IIR finite-dimensional system this approach is not practical as here the im
3、pulse response is of infinite lengthHowever, a direct implementation of the FIR finite-dimensional system is practicalDigital filter StructuresIntroduction The above representations are not clear enough for us to implement those filters(such as in hardware form or improving our algorithms). The stru
4、ctural representation provides the relations between some pertinent internal variables with the input and the output that in turn provide the keys to the implementation.8.1 Block Diagram Representation1. The basic building blocks and signal-flowing diagram: 8.1 Block Diagram Representation8.1 Block
5、Diagram RepresentationExample Its block diagram is as below:8.1 Block Diagram Representation The advantages of representation in block diagram form:(1) Easy to write down the computational algorithm.(2) Easy to determination the relation between the input and output.(3) Easy to derive other “equival
6、ent” block diagram yielding different algorithms.(4) Easy to determine the hardware requirements.8.1 Block Diagram Representation2. The Delay-Free Loop ProblemIt is physically impossible ! We must change it,otherwise ,it cannot be realized physically! (Fig8.3)8.1 Block Diagram Representation3.canoni
7、c structure:the number of delays is equal to the order of the difference equation. Otherwise, it is a noncanonic structure.8.2 Equivalent StructureEquivalent Structure:They have the same transfer function.We can get the equivalent structure via the transpose operation:(1) Reverse all paths.(2) Repla
8、ce pick-off nodes by adders,and vice versa.(3) Interchange the input and the output nodes.8.3 Basic FIR Filter Structure8.3.1 Direct Forms It is called a tapped delay line or a transversal filter.A causal FIR filter of order N8.3 Basic FIR Filter StructureFor Its direct form structure is as belowBot
9、h direct forms are canonic structures.Its Equivalent Structure is as below8.3 Basic FIR Filter Structure8.3.2 Cascade Form Cascade form is also canonic structure. Where H(z) is divided into first-order( equal zero) or second-order transfer functions.8.3 Basic FIR Filter Structure8.3.3 Polyphase real
10、izationSee Fig8.7cSee Fig8.7bSee Fig8.7a8.3 Basic FIR Filter StructureThe above structures are noncanonic.For Where If the delay(z-L) in all subfilters are shared,the structure is canonic. See Fig8.8 The polyphase structures are often used in multirate digital signal processing applications for comp
11、utation efficient realizations.8.3 Basic FIR Filter Structure8.3.4 Linear-Phase FIR Structures Linear-Phase FIR filter : hn is symmetric, or antisymmetric: The characterization can reduce the number of multipliers(almost a half) indirect form. Example The implementations of length 7 and 8 with symme
12、tric impulse response : 8.3 Basic FIR Filter Structure It is noted that a similar savings occurs in the case of an FIR filter with an antisymmetric impulse response. 8.3 Basic FIR Filter Structure8.3 Basic FIR Filter StructureExample: Consider an FIR filter as belowIts cascade form structure is want
13、ed.Solution:8.3 Basic FIR Filter Structure8.3 Basic FIR Filter StructureIts cascade form structure is as below:8.4 Basic IIR Structure8.4.1 Direct FormFor We can use the possible realization schemeWhere 8.4 Basic IIR StructureFor H1(z),we can get its structure as belowFor H2(z),we can get its struct
14、ure as belowFig8.128.4 Basic IIR StructureWhile H(z)=H1(z)H2(z),so we can get the direct structure of H(z) as belowIts Equivalent Structure is as below8.4 Basic IIR StructureBecause H(z)=H1(z)H2(z)=H2(z)H1(z),so by exchange H1(z)and H2(z) we can get other two direct structures.8.4 Basic IIR Structur
15、e All direct forms above are noncanonic structures. But from the last two structures we can easily get its canonic structures as below.8.4 Basic IIR Structure For direct form structure, It is difficult to modify zeros and poles. 8.4 Basic IIR Structure8.4.2 Cascade Forms It is easy to modify zeros a
16、nd poles.But the forms of realization are no identical. 8.4 Basic IIR Structure8.4.3 Parallel Form 8.4 Basic IIR StructureIt is needed partial-fractional expansion. It is easy to modify poles with identical form.Example For a system as below Its transfer function 8.4 Basic IIR Structureny1/z1/z4/38/
17、1-3/1nxIts direct form is as rightThe cascade form with first-order ny1/z4/13/12/11/znx8.4 Basic IIR Structure1/z1/z3/10nx3/7-ny4/12/1The paralle form with first-order 8.4 Basic IIR StructureIts direct form is as belowExample For a system as below 8.4 Basic IIR StructureIts cascade form with second-order 8.4 Basic IIR StructureIts paralle form with second-order 8.5 Realization Using MATLABThe cascade form requires the factorization of the transfer function which can b
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026山東淄博市臨淄區(qū)教育和體育局所屬事業(yè)單位招聘31人備考題庫帶答案詳解
- 關于軟件正版化工作整改情況的自查報告
- 兒童科普飛機教學
- 2026年集成式巡航輔助系統(tǒng)項目可行性研究報告
- 2026年智能工廠設備迭代項目公司成立分析報告
- 2026年智能加濕器 (睡眠模式)項目評估報告
- 2026年智能天窗項目公司成立分析報告
- 《GAT 2000.254-2019公安信息代碼 第254部分:視頻圖像事件類型代碼》專題研究報告
- 高處作業(yè)方案及技術措施
- 社保培訓教學
- 高二年級上冊物理期末試卷
- 2025年熱科院筆試試題及答案
- T-CSF 0114-2025 城市綠地植物物種多樣性評價規(guī)范
- 造價咨詢方案的指導思想
- 印刷品采購合同協(xié)議書
- 郯城一中自主招生考試試題及答案
- 員工數(shù)據(jù)安全培訓
- 人工智能技術在仲裁中的應用與挑戰(zhàn)-洞察及研究
- 施工機具安全檢查記錄表
- 船舶棄船應急演練記錄范文
- 武夷山茶山轉讓協(xié)議合同
評論
0/150
提交評論