黑龍江省鶴崗市2023學(xué)年高考仿真模擬數(shù)學(xué)試卷(含解析)_第1頁
黑龍江省鶴崗市2023學(xué)年高考仿真模擬數(shù)學(xué)試卷(含解析)_第2頁
黑龍江省鶴崗市2023學(xué)年高考仿真模擬數(shù)學(xué)試卷(含解析)_第3頁
黑龍江省鶴崗市2023學(xué)年高考仿真模擬數(shù)學(xué)試卷(含解析)_第4頁
黑龍江省鶴崗市2023學(xué)年高考仿真模擬數(shù)學(xué)試卷(含解析)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2023學(xué)年高考數(shù)學(xué)模擬測(cè)試卷考生請(qǐng)注意:1答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知函數(shù),則不等式的解集是( )ABCD2已知,且,則在方向上的投影為( )ABCD3拋物線的準(zhǔn)線與軸的交點(diǎn)為點(diǎn),過點(diǎn)作直線與拋物線交于、兩點(diǎn),使得是的中點(diǎn),則直線的斜率為( )ABC1D

2、4已知圓關(guān)于雙曲線的一條漸近線對(duì)稱,則雙曲線的離心率為( )ABCD5已知復(fù)數(shù),則( )ABCD26我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)(即質(zhì)數(shù))的和”,如,在不超過20的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于20的概率是( )ABCD以上都不對(duì)7若x,y滿足約束條件則z=的取值范圍為( )AB,3C,2D,28甲、乙、丙、丁四位同學(xué)高考之后計(jì)劃去三個(gè)不同社區(qū)進(jìn)行幫扶活動(dòng),每人只能去一個(gè)社區(qū),每個(gè)社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為 ( )A8B7C6D59已知集合,集合,若,則( )ABCD

3、10正方體,是棱的中點(diǎn),在任意兩個(gè)中點(diǎn)的連線中,與平面平行的直線有幾條( )A36B21C12D611拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),若點(diǎn),則的最小值為( )ABCD12在中,則邊上的高為( )AB2CD二、填空題:本題共4小題,每小題5分,共20分。13已知向量,若,則實(shí)數(shù)_.14如圖是一個(gè)算法的偽代碼,運(yùn)行后輸出的值為_15在中,是的角平分線,設(shè),則實(shí)數(shù)的取值范圍是_.16函數(shù)的定義域是_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知?jiǎng)訄A恒過點(diǎn),且與直線相切.(1)求圓心的軌跡的方程;(2)設(shè)是軌跡上橫坐標(biāo)為2的點(diǎn),的平行線交軌跡于,兩點(diǎn),交軌跡在

4、處的切線于點(diǎn),問:是否存在實(shí)常數(shù)使,若存在,求出的值;若不存在,說明理由.18(12分)已知橢圓的離心率為,橢圓C的長(zhǎng)軸長(zhǎng)為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點(diǎn),是否存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說明理由.19(12分)每年的寒冷天氣都會(huì)帶熱“御寒經(jīng)濟(jì)”,以交通業(yè)為例,當(dāng)天氣太冷時(shí),不少人都會(huì)選擇利用手機(jī)上的打車軟件在網(wǎng)上預(yù)約出租車出行,出租車公司的訂單數(shù)就會(huì)增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:)與網(wǎng)上預(yù)約出租車訂單數(shù)(單位:份);日平均氣溫()642網(wǎng)上預(yù)約訂單數(shù)1001351501

5、85210(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測(cè)日平均氣溫為時(shí),該出租車公司的網(wǎng)約訂單數(shù);(2)天氣預(yù)報(bào)未來5天有3天日平均氣溫不高于,若把這5天的預(yù)測(cè)數(shù)據(jù)當(dāng)成真實(shí)的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.附:回歸直線的斜率和截距的最小二乘法估計(jì)分別為:20(12分)已知函數(shù),直線是曲線在處的切線 (1)求證:無論實(shí)數(shù)取何值,直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo); (2)若直線經(jīng)過點(diǎn),試判斷函數(shù)的零點(diǎn)個(gè)數(shù)并證明21(12分)等差數(shù)列的前項(xiàng)和為,已知,(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)

6、列的前項(xiàng)和為,求使成立的的最小值22(10分)如圖,在直三棱柱中,為的中點(diǎn),點(diǎn)在線段上,且平面(1)求證:;(2)求平面與平面所成二面角的正弦值2023學(xué)年模擬測(cè)試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【答案解析】由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【題目詳解】函數(shù),可得,時(shí),單調(diào)遞增,故不等式的解集等價(jià)于不等式的解集故選:B【答案點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性,根據(jù)單調(diào)性解不等式,屬于中檔題.2、C【答案解析】由向量垂直的向量表示求出,再由投影的定義計(jì)算【題目詳解】由可

7、得,因?yàn)?,所以故在方向上的投影為故選:C【答案點(diǎn)睛】本題考查向量的數(shù)量積與投影掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵3、B【答案解析】設(shè)點(diǎn)、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合可求得的值,由此可得出直線的斜率.【題目詳解】由題意可知點(diǎn),設(shè)點(diǎn)、,設(shè)直線的方程為,由于點(diǎn)是的中點(diǎn),則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達(dá)定理得,得,解得,因此,直線的斜率為.故選:B.【答案點(diǎn)睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.4、C【答案解析】將圓,化為標(biāo)準(zhǔn)方程為,求得圓心為.根據(jù)圓

8、關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,.再根據(jù)求解.【題目詳解】已知圓,所以其標(biāo)準(zhǔn)方程為:,所以圓心為.因?yàn)殡p曲線,所以其漸近線方程為,又因?yàn)閳A關(guān)于雙曲線的一條漸近線對(duì)稱,則圓心在漸近線上,所以.所以.故選:C【答案點(diǎn)睛】本題主要考查圓的方程及對(duì)稱性,還有雙曲線的幾何性質(zhì) ,還考查了運(yùn)算求解的能力,屬于中檔題.5、C【答案解析】根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【題目詳解】,故選:C【答案點(diǎn)睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.6、A【答案解析】首先確定不超過的素?cái)?shù)的個(gè)數(shù),根據(jù)古典概型概率求解方法計(jì)算可得結(jié)果.【題目詳解】不超過的素?cái)?shù)有,共個(gè),從這個(gè)素?cái)?shù)中任選個(gè),有種可能;其中選取的兩個(gè)

9、數(shù),其和等于的有,共種情況,故隨機(jī)選出兩個(gè)不同的數(shù),其和等于的概率故選:.【答案點(diǎn)睛】本題考查古典概型概率問題的求解,屬于基礎(chǔ)題.7、D【答案解析】由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【題目詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,所以.故選:D.【答案點(diǎn)睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.8、B【答案解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(?。?;A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,

10、?。〣(丙)C(乙); A(甲)B(丙,?。〤(乙);A(甲)B(?。〤(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B. 9、A【答案解析】根據(jù)或,驗(yàn)證交集后求得的值.【題目詳解】因?yàn)?,所以?當(dāng)時(shí),不符合題意,當(dāng)時(shí),.故選A.【答案點(diǎn)睛】本小題主要考查集合的交集概念及運(yùn)算,屬于基礎(chǔ)題.10、B【答案解析】先找到與平面平行的平面,利用面面平行的定義即可得到.【題目詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【答案點(diǎn)睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡(jiǎn)單的組合問題,是一中檔題.11、B【答案解析】通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出

11、切線方程即可求出比值的最小值【題目詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時(shí),有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,故選:【答案點(diǎn)睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題12、C【答案解析】結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長(zhǎng),由此求得邊上的高.【題目詳解】過作,交的延長(zhǎng)線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【答案點(diǎn)睛】本小題主要考查正弦定理解三角形,考查

12、三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【答案解析】根據(jù)向量坐標(biāo)運(yùn)算可求得,根據(jù)平行關(guān)系可構(gòu)造方程求得結(jié)果.【題目詳解】由題意得: ,解得:本題正確結(jié)果:【答案點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,關(guān)鍵是能夠利用平行關(guān)系構(gòu)造出方程.14、13【答案解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時(shí)輸出的b值為13.故答案為13.15、【答案解析】設(shè),由,用面積公式表示面積可得到,利用,即得解.【題目詳解】設(shè),由得:,化簡(jiǎn)得,由于,故.故答案為:【答案

13、點(diǎn)睛】本題考查了解三角形綜合,考查了學(xué)生轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運(yùn)算能力,屬于中檔題.16、【答案解析】由,得,所以,所以原函數(shù)定義域?yàn)?,故答案?三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【答案解析】(1)根據(jù)拋物線的定義,容易知其軌跡為拋物線;結(jié)合已知點(diǎn)的坐標(biāo),即可求得方程;(2)由拋物線方程求得點(diǎn)的坐標(biāo),設(shè)出直線的方程,利用導(dǎo)數(shù)求得點(diǎn)的坐標(biāo),聯(lián)立直線的方程和拋物線方程,結(jié)合韋達(dá)定理,求得,進(jìn)而求得與之間的大小關(guān)系,即可求得參數(shù).【題目詳解】(1)由題意得,點(diǎn)與點(diǎn)的距離始終等于點(diǎn)到直線的距離,由拋物線的定義知圓心的軌跡是以點(diǎn)為焦點(diǎn),直線為準(zhǔn)線

14、的拋物線,則,.圓心的軌跡方程為.(2)因?yàn)槭擒壽E上橫坐標(biāo)為2的點(diǎn),由(1)不妨取,所以直線的斜率為1.因?yàn)?,所以設(shè)直線的方程為,.由,得,則在點(diǎn)處的切線斜率為2,所以在點(diǎn)處的切線方程為.由得所以,所以.由消去得,由,得且.設(shè),則,.因?yàn)辄c(diǎn),在直線上,所以,所以,所以.故存在,使得.【答案點(diǎn)睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問題的求解,涉及導(dǎo)數(shù)的幾何意義,屬綜合性中檔題.18、(1);(2)存在,當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.【答案解析】(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長(zhǎng)軸長(zhǎng)為1列出方程組求解,推出,即可得到橢圓的方程(2)存在實(shí)數(shù)使得以線段為直徑的圓恰

15、好經(jīng)過坐標(biāo)原點(diǎn)設(shè)點(diǎn),將直線的方程代入,化簡(jiǎn),利用韋達(dá)定理,結(jié)合向量的數(shù)量積為0,轉(zhuǎn)化為:求解即可【題目詳解】解:(1)設(shè)橢圓的焦半距為c,則由題設(shè),得,解得,所以,故所求橢圓C的方程為(2)存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.理由如下:設(shè)點(diǎn),將直線的方程代入,并整理,得.(*)則,因?yàn)橐跃€段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O,所以,即.又,于是,解得, 經(jīng)檢驗(yàn)知:此時(shí)(*)式的,符合題意.所以當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O【答案點(diǎn)睛】本題考查橢圓方程的求法,橢圓的簡(jiǎn)單性質(zhì),直線與橢圓位置關(guān)系的綜合應(yīng)用,考查計(jì)算能力以及轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.19、(1),232;(2)【

16、答案解析】(1) 根據(jù)公式代入求解;(2) 先列出基本事件空間,再列出要求的事件,最后求概率即可.【題目詳解】解:(1)由表格可求出代入公式求出,所以,所以當(dāng)時(shí),.所以可預(yù)測(cè)日平均氣溫為時(shí)該出租車公司的網(wǎng)約訂單數(shù)約為232份.(2)記這5天中氣溫不高于的三天分別為,另外兩天分別記為,則在這5天中任意選取2天有,共10個(gè)基本事件,其中恰有1天網(wǎng)約訂單數(shù)不低于210份的有,共6個(gè)基本事件,所以所求概率,即恰有1天網(wǎng)約訂單數(shù)不低于20份的概率為.【答案點(diǎn)睛】考查線性回歸系數(shù)的求法以及古典概型求概率的方法,中檔題.20、(1)見解析,(2)函數(shù)存在唯一零點(diǎn).【答案解析】(1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的

17、幾何意義求出處的切線斜率,利用點(diǎn)斜式即可求出切線方程,根據(jù)方程即可求出定點(diǎn).(2)由(1)求出函數(shù),令方程可轉(zhuǎn)化為記,利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞增,根據(jù),由零點(diǎn)存在性定理即可求出零點(diǎn)個(gè)數(shù).【題目詳解】所以直線方程為即,恒過點(diǎn)將代入直線方程,得考慮方程即,等價(jià)于記,則于是函數(shù)在上單調(diào)遞增,又所以函數(shù)在區(qū)間上存在唯一零點(diǎn), 即函數(shù)存在唯一零點(diǎn).【答案點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義、直線過定點(diǎn)、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、零點(diǎn)存在性定理,屬于難題.21、(1);(2)的最小值為19.【答案解析】(1)根據(jù)條件列方程組求出首項(xiàng)、公差,即可寫出等差數(shù)列的通項(xiàng)公式;(2)根據(jù)等差數(shù)列前n項(xiàng)和化簡(jiǎn),利用裂項(xiàng)相消法求和,解不等式即可求解.【題目詳解】(1)等差數(shù)列的公差設(shè)為,可得,解得,則;(2),前n項(xiàng)和為,即,可得,即,則的最小值為19.【答案點(diǎn)睛】本題主要考查了等差數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論