黑龍江省安達市高級中學2023學年高考數(shù)學全真模擬密押卷(含解析)_第1頁
黑龍江省安達市高級中學2023學年高考數(shù)學全真模擬密押卷(含解析)_第2頁
黑龍江省安達市高級中學2023學年高考數(shù)學全真模擬密押卷(含解析)_第3頁
黑龍江省安達市高級中學2023學年高考數(shù)學全真模擬密押卷(含解析)_第4頁
黑龍江省安達市高級中學2023學年高考數(shù)學全真模擬密押卷(含解析)_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2023學年高考數(shù)學模擬測試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1 “中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作孫子算經(jīng)卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾

2、何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為( )A56383B57171C59189D612422已知函數(shù)()的最小值為0,則( )ABCD3如圖,在四邊形中,則的長度為( )ABCD4已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點若雙曲線的離心率為2,三角形AOB的面積為,則p=( )A1BC2D35已知雙曲線的左、右焦點分別為,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為( )ABCD6已知,是雙曲線的兩個焦點,過點

3、且垂直于軸的直線與相交于,兩點,若,則的內(nèi)切圓的半徑為( )ABCD7已知,則不等式的解集是( )ABCD8 “十二平均律” 是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為ABCD9拋物線的準線方程是,則實數(shù)( )ABCD10已知函數(shù),若成立,則的最小值為( )A0B4CD11復數(shù)的共軛復數(shù)對應的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限12已知橢圓:的左,右焦點分別為,過的

4、直線交橢圓于,兩點,若,且的三邊長,成等差數(shù)列,則的離心率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13曲線在點處的切線方程是_.14已知雙曲線的一條漸近線為,則焦點到這條漸近線的距離為_15已知不等式的解集不是空集,則實數(shù)的取值范圍是;若不等式對任意實數(shù)恒成立,則實數(shù)的取值范圍是_16已知向量=(1,2),=(-3,1),則=_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)某機構(gòu)組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據(jù)自己的

5、喜愛程度對其排序,然后由家長猜測小孩的排序結(jié)果設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數(shù)字的一種排列定義隨機變量X(xAyA)2+(xByB)2+(xCyC)2+(xDyD)2,用X來衡量家長對小孩飲食習慣的了解程度(1)若參與游戲的家長對小孩的飲食習慣完全不了解()求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;()求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結(jié)果都滿足X4,請判斷這位家長對小孩飲食習慣是否了解,說明理由18

6、(12分)ABC的內(nèi)角的對邊分別為,已知ABC的面積為(1)求;(2)若求ABC的周長.19(12分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點圓心不在y軸上的圓M與直線l,PF,x軸都相切,設M的軌跡為曲線E(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值20(12分)以坐標原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,判斷直線為參數(shù))與圓的位置關(guān)系21(12分)已知函數(shù),.(1)當時,判斷是否是函數(shù)的極值點,并說明理由;(2)當時,

7、不等式恒成立,求整數(shù)的最小值.22(10分)設等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結(jié)果.【題目詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項為23,公差為的等差數(shù)列,記數(shù)列則 令,解得.故該數(shù)列各項之和為.故選:C.【答案點睛】本題考查等差數(shù)列的應用,屬基礎題。2、C【答案解析】設,計算可得,再結(jié)合圖

8、像即可求出答案.【題目詳解】設,則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像, 結(jié)合圖像,得,所以.故選:C【答案點睛】本題主要考查了分段函數(shù)的圖像與性質(zhì),考查轉(zhuǎn)化思想,考查數(shù)形結(jié)合思想,屬于中檔題.3、D【答案解析】設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【題目詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【答案點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.4、C【答案解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,漸近線方程為,求出交

9、點,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;5、C【答案解析】由雙曲線定義得,OM是的中位線,可得,在中,利用余弦定理即可建立關(guān)系,從而得到漸近線的斜率.【題目詳解】根據(jù)題意,點P一定在左支上.由及,得,再結(jié)合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.由,得. 由,解得,即,則漸近線方程為.故選:C.【答案點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.6、B【答案解析】設左焦點的坐標, 由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三

10、角形被內(nèi)切圓的圓心分割3個三角形的面積之和可得內(nèi)切圓的半徑.【題目詳解】由雙曲線的方程可設左焦點,由題意可得,由,可得,所以雙曲線的方程為: 所以,所以三角形ABF2的周長為設內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B【答案點睛】本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應用,屬于中檔題.7、A【答案解析】構(gòu)造函數(shù),通過分析的單調(diào)性和對稱性,求得不等式的解集.【題目詳解】構(gòu)造函數(shù),是單調(diào)遞增函數(shù),且向左移動一個單位得到,的定義域為,且,所以為奇函數(shù),圖像關(guān)于原點對稱,所以圖像關(guān)于對稱. 不等式等價于,等

11、價于,注意到,結(jié)合圖像關(guān)于對稱和單調(diào)遞增可知.所以不等式的解集是.故選:A【答案點睛】本小題主要考查根據(jù)函數(shù)的單調(diào)性和對稱性解不等式,屬于中檔題.8、D【答案解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列. 等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(), 數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.9、C【答案解析】根據(jù)準線的方程寫出拋物線的標準方程,再對照系數(shù)求解即可.【

12、題目詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【答案點睛】本題考查拋物線與準線的方程.屬于基礎題.10、A【答案解析】令,進而求得,再轉(zhuǎn)化為函數(shù)的最值問題即可求解.【題目詳解】(),令:,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【答案點睛】本題主要考查了導數(shù)在研究函數(shù)最值中的應用,考查了轉(zhuǎn)化的數(shù)學思想,恰當?shù)挠靡粋€未知數(shù)來表示和是本題的關(guān)鍵,屬于中檔題.11、A【答案解析】試題分析:由題意可得:. 共軛復數(shù)為,故選A.考點:1.復數(shù)的除法運算;2.以及復平面上的點與復數(shù)的關(guān)系12、C【答案解析】根據(jù)等差數(shù)列的性質(zhì)設出,利用勾股定理列方程,結(jié)合橢圓的定義,

13、求得.再利用勾股定理建立的關(guān)系式,化簡后求得離心率.【題目詳解】由已知,成等差數(shù)列,設,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,離心率.故選:C【答案點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】利用導數(shù)的幾何意義計算即可.【題目詳解】由已知,所以,又,所以切線方程為,即.故答案為:【答案點睛】本題考查導數(shù)的幾何意義,考查學生的基本計算能力,要注意在某點處的切線與過某點的切線的區(qū)別,是一道容易題.14、2.【答案解析】由雙曲線的一條漸近

14、線為,解得求出雙曲線的右焦點,利用點到直線的距離公式求解即可【題目詳解】雙曲線的一條漸近線為 解得: 雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結(jié)果:【答案點睛】本題考查了雙曲線和的標準方程及其性質(zhì),涉及到點到直線距離公式的考查,屬于基礎題15、【答案解析】利用絕對值的幾何意義,確定出的最小值,然后根據(jù)題意即可得到的取值范圍化簡不等式,求出 的最大值,然后求出結(jié)果【題目詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有 ,即而當時滿足題意,解得或所以答案為【答案點睛】本題主要考查的是函數(shù)恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數(shù)形結(jié)合來解答本題,注意去絕對值時

15、的分類討論化簡16、-6【答案解析】由可求,然后根據(jù)向量數(shù)量積的坐標表示可求 .【題目詳解】=(1,2),=(-3,1),=(-4,-1),則 =1(-4)+2(-1)=-6故答案為-6【答案點睛】本題主要考查了向量數(shù)量積的坐標表示,屬于基礎試題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)()()分布表見解析;(2)理由見解析【答案解析】(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結(jié)果,利用列舉法求出其中滿足“家長的排序與對應位置的數(shù)字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完

16、全不同的概率(ii)根據(jù)(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,由此能求出X的分布列(2)假設家長對小孩的飲食習慣完全不了解,在一輪游戲中,P(X4)=P(X=0)+ P(X=2)=,三輪游戲結(jié)果都滿足“X4”的概率為,這個結(jié)果發(fā)生的可能性很小,從而這位家長對小孩飲食習慣比較了解【題目詳解】(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序為xA,xB,xC,xD為1234的情況,家長的排序有24種等可能結(jié)果,其中滿足“家長的排序與對應位置的數(shù)字完全不同”的情況有9種,分別為:2143,2341,2413,31

17、42,3412,3421,4123,4312,4321,家長的排序與對應位置的數(shù)字完全不同的概率P基小孩對四種食物的排序是其他情況,只需將角標A,B,C,D按照小孩的順序調(diào)整即可,假設小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實這樣處理后與第一種情況的計算結(jié)果是一致的,他們在一輪游戲中,對四種食物排出的序號完全不同的概率為(ii)根據(jù)(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,列出所有情況,分別計算每種情況下的x的值,X的分布列如下表: X 02 4 6 8 10 12 14 16

18、 18 20 P (2)這位家長對小孩的飲食習慣比較了解理由如下:假設家長對小孩的飲食習慣完全不了解,由(1)可知,在一輪游戲中,P(X4)P(X0)+P(X2),三輪游戲結(jié)果都滿足“X4”的概率為()3,這個結(jié)果發(fā)生的可能性很小,這位家長對小孩飲食習慣比較了解【答案點睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎知識,考查運算求解能力,是中檔題18、 (1)(2) .【答案解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據(jù)題設和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設得,即.由正弦定

19、理得.故.(2)由題設及(1)得,即.所以,故.由題設得,即.由余弦定理得,即,得.故的周長為.點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.19、(1),(2)【

20、答案解析】根據(jù)題意設,可得PF的方程,根據(jù)距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設,根據(jù)導數(shù)的幾何意義和斜率公式,求,并構(gòu)造函數(shù),利用導數(shù)求出函數(shù)的最值【題目詳解】因為拋物線C的方程為,所以F的坐標為,設,因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,所以,即,所以E的方程為,設,由知,點Q處的切線的斜率存在,由對稱性不妨設,由,所以,所以,所以,令,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當時,取得極小值也是最小值,即AB取得最小值此時【答案點睛】本題考查了直線和拋物線的位置關(guān)系,以及利用導數(shù)求函數(shù)最值的關(guān)系,考查了運算能力和轉(zhuǎn)化能力,屬于難題20、直線與圓C相切【答案解析】首先把直線和圓轉(zhuǎn)換為直角坐標方程,進一步利用點到直線的距離的應用求出直線和圓的位置關(guān)系【題目詳解】直線為參數(shù)),轉(zhuǎn)換為直角坐標方程為圓轉(zhuǎn)換為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論